

Aktuelle Fakten zur Photovoltaik in Deutschland

Aktuelle Fassung abrufbar unter www.pv-fakten.de

Zusammengestellt von Dr. Harry Wirth Bereichsleiter Photovoltaik Module und Kraftwerke Fraunhofer ISE

Kontakt:
Karin Schneider
Presse und Public Relations
Telefon: +49 (0) 7 61 / 45 88-51 47
Fraunhofer-Institut für Solare Energiesysteme ISE
Heidenhofstraße 2
79110 Freiburg
info@ise.fraunhofer.de

Zitierhinweis: Aktuelle Fakten zur Photovoltaik in Deutschland, Fraunhofer ISE, Download von www.pv-fakten.de, Fassung vom 26.03.2020

Fakten zur PV.docx 26.03.20

Inhalt

1.	Wo	zu dieser Leitfaden?	5
2.	Erre	ichen wir unser jährliches Zubauziel?	5
3.	Lief	ert PV relevante Beiträge zur Stromversorgung?	5
4.	Ist F	PV-Strom zu teuer?	6
	4.1	Stromgestehungskosten	7
	4.2	Einspeisevergütung	9
	4.3	Preisbildung an der Strombörse und der Merit Order Effekt	11
	4.4	Ermittlung der Differenzkosten	13
	4.5	Privilegierte Verbraucher	14
	4.6	EEG-Umlage	15
5.	Sub	ventionen und Strompreise	17
	5.1	Wird PV-Strom subventioniert?	17
	5.2	Wird die fossile und nukleare Stromerzeugung subventioniert?	18
	5.3	Subventionieren Mieter gut situierte Hauseigentümer?	19
	5.4	Verteuert PV-Stromerzeugung den Strom für Privathaushalte?	20
	5.5	Verteuert PV den Strom für die Industrie?	21
6.	Ехр	ortieren wir massiv PV-Strom ins europäische Ausland?	22
7.	Kan	n eine neue PV-Anlage gute Renditen bringen?	23
8.	Erze	eugt die PV-Branche nur Arbeitsplätze in Asien?	25
9.	Zeig	gen große deutsche Energieversorger Interesse an PV?	26
10	. и	elche Fördermittel gehen in die PV-Forschung??	28
11	. Ü	berlastet PV-Strom unser Energiesystem?	29
	11.1	Übertragung und Verteilung	29
	11.2	Volatilität	
	11.2. 11.2.		
	11.2.		
	11.3	Regelbarkeit	34
	11.4	Konflikte mit trägen fossilen und nuklearen Kraftwerken	34

Fakten zur PV.docx 26.03.20 2 (99)

11.5	Ge	fährdet volatiler Solarstrom die Versorgungssicherheit?	36
11.6	S Mu	uss der PV-Ausbau auf Speicher warten?	36
12. Betrie		chlingt die Produktion von PV-Modulen mehr Energie als diese im ern können?	37
13.	Gibt	es in Deutschland genügend Flächen für PV?	37
13.1	l Ko	nkurrieren Strom- und Lebensmittelproduktion auf Ackerflächen?	39
13.2	Z Ze	rstören PV-Anlagen ökologisch wertvolle Flächen?	40
14.	Find	en PV-Kraftwerke Akzeptanz in der Bevölkerung?	40
15.	Arbe	eiten PV-Anlagen in Deutschland effizient?	42
15.1	l De	gradieren PV-Module?	43
15.2	2 Ve	rschmutzen PV-Module?	44
15.3	8 Ar	beiten PV-Anlagen selten unter Volllast?	44
16.	Liefe	ert PV relevante Beiträge zum Klimaschutz?	47
16.1	l Ge	fährdet der anthropogene CO2-Ausstoß das globale Klima?	47
16.2	2 Lie	rfert PV relevante Beiträge zur Senkung des CO₂-Ausstoßes?	49
16.3 Gas	8 En e? 52	tstehen bei der Produktion von PV neben CO₂ weitere klimaschädliche	
16.4	l He	izen dunkle PV-Module durch ihre Absorption die Erde auf?	52
<i>17.</i>	Erse	tzen PV-Anlagen fossile und nukleare Kraftwerke?	52
18. Stron		nen wir einen wesentlichen Teil unseres Energiebedarfs durch PV- en?	. 53
18.1		sgangspunkt: Energiebedarf und Energieangebot	
18.2		ergieszenarien	
18.3		ansformationsschritte	
	8.3.1	Verstetigung der PV-Stromerzeugung	
	8.3.2	Komplementärbetrieb von Kraftwerken	
	8.3.3	Erhöhung der Energieeffizienz	
	8.3.4 8.3.5	Lastmanagement	
	8.3.6	Kraft-Wärme-Kopplung	
	8.3.7	Energiespeicherung	
18	8.3.8	Netzausbau	
18	8.3.9	Übersicht	75
18.4	l Mu	uss die Energiewende auf die Bundespolitik warten?	78
19.	Brau	chen wir eine PV-Produktion in Deutschland?	78
<i>20.</i>	Brau	cht es ein Erneuerbare-Energien-Gesetz (EEG)?	79
21.		alten PV-Module giftige Substanzen?	70

Fakten zur PV.docx 26.03.20 3 (99)

21.	1	Waferbasierte Module	79
21.	2	Dünnschicht-Module	80
21.	3	Solarglas	80
21.	4	Rücknahme und Recycling	80
22.	5	Sind Rohstoffe zur PV-Produktion ausreichend verfügbar?	81
22.	1	Waferbasierte Module	81
22.	2	Dünnschicht-Module	81
<i>23.</i>	L	Erhöhen PV-Anlagen das Brandrisiko?	81
23.	1	Können defekte PV-Anlagen einen Brand auslösen?	81
23.	2	Gefährden PV-Anlagen die Feuerwehrleute?	82
23.	3	Behindern PV-Module den direkten Löschangriff über das Dach?	83
23.	4	Entstehen beim Brand von PV-Modulen giftige Immissionen?	83
24.	/	Anhang: Fachbegriffe	83
24.	1	EEG-Umlage	83
24.	2	Modulwirkungsgrad	84
24.	3	Nennleistung eines PV-Kraftwerks	85
24.	4	Spezifischer Ertrag	85
24.	5	Systemwirkungsgrad	
24.	6	Performance Ratio	85
24.	7	Grundlast, Mittellast, Spitzenlast, Netzlast und Residuallast	85
24.	8	Stromerzeugung und -verbrauch	86
<i>25.</i>	/	Anhang: Umrechnungstabellen [EEBW]	88
<i>26.</i>	/	Anhang: Abkürzungen	89
27.	/	Anhang: Quellen	90
28.	/	Anhang: Abbildungen	97

Fakten zur PV.docx 26.03.20 4 (99)

1. Wozu dieser Leitfaden?

Deutschland lässt das fossil-nukleare Energiezeitalter hinter sich. Photovoltaik (PV) wird in unserer nachhaltigen Energiezukunft eine zentrale Rolle spielen. Die vorliegende Zusammenstellung aktueller Fakten, Zahlen und Erkenntnisse soll eine gesamtheitliche Bewertung des Photovoltaik-Ausbaus in Deutschland unterstützen.

2. Erreichen wir unser jährliches Zubauziel?

Das Jahresziel der Bundesregierung für den Zubau 2019 wurde übertroffen, die Ziele der Energiewende bleiben in weiter Ferne.

Um unseren gesamten Energiebedarf weitestgehend aus Erneuerbaren Energien (EE) zu decken, ist ein massiver Ausbau der installierten PV-Leistung notwendig, neben einer Reihe weiterer Maßnahmen. Verschiedene modellbasierte Szenarien rechnen mit einem Ausbaukorridor von 120-650 GW_p Nennleistung, abhängig von Annahmen zu Randbedingungen und flankierenden Maßnahmen ([BCG], [ACA], [ESYS], [ISE5], [IWES], [UBA], [ISE11], [UBA8], [IRENA], [ISE12]). Nehmen wir uns für einen PV-Ausbau auf 400 GW_p Zeit bis 2050, so müssen jährlich im Mittel 12 GW_p PV neu zugebaut werden. Zunehmend müssen auch Altanlagen ersetzt werden. Diese Ersatzinstallationen fallen derzeit noch wenig ins Gewicht, sie steigen jedoch im voll ausgebauten Zustand bei einer angenommenen Nutzungsdauer von 30 Jahren auf ca. 13 GW_p pro Jahr.

Der Koalitionsvertrag vom März 2018 sieht als Zwischenziel vor, den Anteil Erneuerbarer Energien (EE) bis 2030 auf 65 Prozent des Bruttostromverbrauchs anzuheben. Dazu ist ein mittlerer jährlicher PV-Zubau von mindestens 5-10 GW_p notwendig, abhängig von der Entwicklung des Strombedarfs und des Ausbaus der Windkraft ([AGORA1], [BEE]). Der Entwurf der Bundesregierung zum Klimaschutzprogramm vom 9.10.2019 sieht ein Ausbauziel von insgesamt 98 GW_p Photovoltaik bis 2030 vor. Dazu wären im Mittel 4,5 GW_p/a Zubau notwendig.

In den Jahren 2013-2018 wurden im Mittel nur 1,8 GW_p/a installiert, 2019 waren es 3,9 GW_p (Gesamtzubau laut Bundesnetzagentur nach Meldedatum).

3. Liefert PV relevante Beiträge zur Stromversorgung?

Ja.

Im Jahr 2019 deckte die PV mit einer Stromerzeugung von **46,5 TWh** [ISE4] 8,2% des Brutto-Stromverbrauchs (Begriffserläuterung in Abschnitt 24.8) in Deutschland, alle Erneuerbaren Energien (EE) kamen zusammen auf 43% (Abbildung 1). An sonnigen Tagen kann PV-Strom zeitweise bis zu 50% unseres momentanen Stromverbrauchs decken.

Fakten zur PV.docx 26.03.20 5 (99)

Ende 2019 waren in Deutschland PV-Module mit einer Nennleistung von knapp **49 GW** installiert [ISE4], verteilt auf über **1,7 Mio. Anlagen** [BSW1].

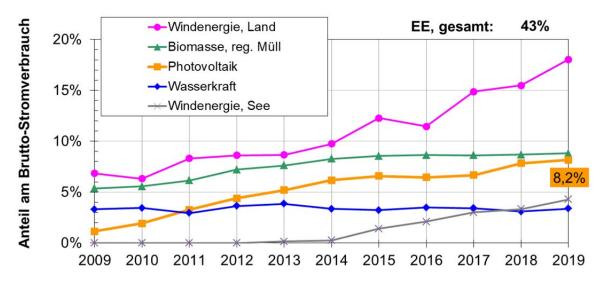


Abbildung 1: Entwicklung des Anteils Erneuerbarer Energien am Brutto-Stromverbrauch in Deutschland, Daten aus [BMWi1], [BDEW3], [ISE4]

4. Ist PV-Strom zu teuer?

Das kommt auf den Bezugspunkt an.

Der Kostenvergleich mit fossiler und nuklearer Stromerzeugung wird dadurch erschwert, dass externe Kosten durch Umwelt-, Klima- und Gesundheitsschäden bzw. Risiken als Folge von Schadstoffemissionen weitgehend außen vor bleiben ([UBA3], [FÖS1], [FÖS2]). Die Grenzkosten für Atomstrom liegen in der Größenordnung von 1 ct/kWh, für Kohlestrom 3-7 ct/kWh, für Gasstrom 6-9 ct/kWh, dazu kommen die Fixkosten der Kraftwerke (z.B. Investition, Kapital). Die Grenzkosten decken im Wesentlichen die Bereitstellung des Brennstoffes, nicht jedoch die Neutralisierung der strahlenden Abfälle bzw. umweltbelastenden Emissionen (CO₂, NO_x, SO_x, Hg). Zwar wurde im Jahr 2005 ein EUweiter Emissionshandel (European Union Emissions Trading System, EU ETS) für den Energiesektor eingeführt, um den CO₂-Ausstoß zu verteuern und die Kosten ansatzweise zu internalisieren. Wegen eines Überangebots an Zertifikaten war der Preis jedoch bis Ende 2017 zusammengebrochen. Europaweit deckt der Zertifikatehandel zudem nur 45% der Treibhausgasemissionen ab, weil wichtige Sektoren ausgenommen sind [UBA5]. Die direkten und indirekten Folgekosten des globalen Klimawandels, die auch auf Deutschland zukommen, sind heute nicht abschätzbar.

Ob die Rückstellungen der Betreiber für den Rückbau der Kernkraftwerke ausreichen werden, ist heute nicht absehbar. Der Staat hat von den Kraftwerksbetreiber für die Übernahme des deutschen Atommülls 24 Mrd. € erhalten, die in einen Fonds geflossen sind. Ob dessen Erträge bis 2050 ausreichen werden, um für Bau und Inbetriebnahme

Fakten zur PV.docx 26.03.20 6 (99)

eines Endlagers aufzukommen, ist ebenso ungewiss; nach Berechnungen der Endlagerkommission werden die Gesamtkosten auf 176 Mrd. € veranschlagt.

Unfallschäden im Betrieb der Kernkraftwerke bis 250 Mio. € sind über den Versicherungsmarkt gedeckt, bis 2,5 Mrd. € über einen Betreiberpool, bei größeren Schäden haften die Betreiber der Kernkraftwerke nur mit ihrem Vermögen [ATW1]. Zum Vergleich: die Nuklearkatastrophe von Fukushima verursachte einen Schaden in Höhe von ca. 100 Mrd. € und liegt damit um ein Vielfaches über dem Unternehmenswert deutscher Kernkraftwerksbetreiber.

In neuen MW-Kraftwerken wird PV-Strom in Deutschland zu Kosten von 4-6 ct/kWh produziert, unter der Voraussetzung, dass der Strom gemäß momentaner Erzeugungsleistung vollständig abgenommen wird. Der bisher günstigste Gebotspreis liegt bei 3,55 ct/kWh. Ältere, kleinere Kraftwerke produzieren aufgrund der früher sehr hohen Investitionskosten deutlich teurer. Um die Energiewende zu fördern und Investitionen in PV-Anlagen verschiedener Größe anzuregen, wurde im Jahr 2000 das Instrument des EEG geschaffen.

Es soll dem Anlagenbetreiber bei garantierter Abnahme einen wirtschaftlichen Betrieb mit angemessenem Gewinn ermöglichen. Ziel des EEG ist weiterhin, die Stromgestehungskosten aus EE durch die Schaffung eines Marktes für EE-Systeme kontinuierlich zu reduzieren (s. Abschnitt 4.1).

Der Aufbau der PV-Erzeugungskapazitäten ist nur ein Teil der Transformationskosten, die mit der Energiewende einhergehen. Lange Zeit stand dieser Teil im Vordergrund der Diskussion. In den letzten Jahren wurden PV (und Windkraft) jedoch systemrelevant, womit neue Kostenarten in das Blickfeld rücken. Neben den reinen Erzeugungskosten für Strom aus EE geht es zunehmend um Kosten für

- den Ausbau von Nord-Süd-Stromtrassen für Windstrom
- den Abbau der Kernkraftwerke
- den Rück- und Umbau des fossilen Kraftwerkparks für flexiblen Betrieb bei abnehmender Auslastung
- den Aufbau netzdienlicher Speicher- und Wandlerkapazitäten (stationäre Batterien und E-Mobilität, Pumpspeicher, Wärmepumpen, Wärmespeicher, Power-To-X)

Diese Kosten werden nicht durch den PV-Ausbau verursacht, sie gehen – ebenso wie der PV-Ausbau selbst - auf das Konto der Energiewende. Verursacher der Kosten für die Energiewende ist die Gesamtheit der Energieverbraucher, für die eine nachhaltige Energieversorgung geschaffen werden muss.

4.1 Stromgestehungskosten

Die Stromgestehungskosten eines PV-Kraftwerks bezeichnen das Verhältnis aus Gesamtkosten (€) und elektrischer Energieproduktion (kWh), beides bezogen auf seine wirtschaftliche Nutzungsdauer. Die Höhe der Stromgestehungskosten für PV-Kraftwerke [ISE1] wird v.a. bestimmt durch:

7 (99) 7 (99)

- 1. Anschaffungsinvestitionen für Bau und Installation der Anlagen
- 2. Finanzierungsbedingungen (Eigenkapitalrendite, Zinsen, Laufzeiten)
- 3. Betriebskosten während der Nutzungszeit (Versicherung, Wartung, Reparatur)
- 4. Einstrahlungsangebot
- 5. Lebensdauer und jährliche Degradation der Anlage

Die jährlichen Betriebskosten eines PV-Kraftwerks liegen mit ca. 1% der Investitionskosten vergleichsweise niedrig, auch die Finanzierungskosten sind aufgrund des aktuell niedrigen Zinsniveaus günstig. Der dominierende Kostenanteil von PV-Kraftwerken, die Investitionskosten, fielen seit 2006 dank technologischen Fortschritts, Skalen- und Lerneffekten im Mittel um ca. 13% pro Jahr, insgesamt um 75%. Abbildung 2 zeigt die Preisentwicklung für Aufdachanlagen von 10 bis 100 kW_D Nennleistung in Deutschland.

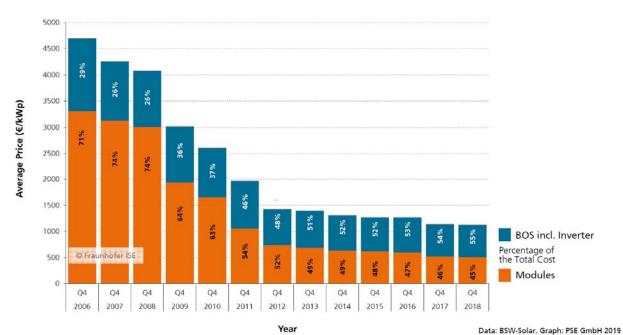


Abbildung 2: Durchschnittlicher Endkundenpreis (Systempreis, netto) für fertig installierte Aufdachanlagen von 10-100 kW_p [ISE10]

Der Preis der PV-Module ist für knapp die Hälfte der Investitionskosten eines PV-Kraftwerks dieser Größenordnung verantwortlich, bei größeren Kraftwerken steigt dieser Anteil. Die Historie zeigt, dass die Preisentwicklung für PV-Module einer sogenannten "Preis-Erfahrungskurve" folgt, d.h. bei Verdopplung der gesamten installierten Leistung sinken die Preise um einen konstanten Prozentsatz. Abbildung 3 stellt die inflationsbereinigten Weltmarkt-Preise. Ende 2019 waren weltweit über 600 GWp PV-Leistung installiert. Es wird erwartet, dass die Preise auch künftig entsprechend dieser Gesetzmäßigkeit weiter sinken, sofern auch in Zukunft große Anstrengungen bei der Weiterentwicklung der Produkte und Herstellprozesse geleistet werden.

Der Durchschnittspreis umfasst alle marktrelevanten Technologien, also kristallines Silizium und Dünnschicht. Der Trend deutet auf ca. 24% Preisreduktion bei einer Verdopplung der kumulierten installierten Leistung. Einen Orientierungswert für Stromgeste-

Fakten zur PV.docx 26.03.20 8 (99)

hungskosten aus neuen PV-Freiflächenanlagen liefern die Ausschreibungen der Bundesnetzagentur (s. folgender Abschnitt).

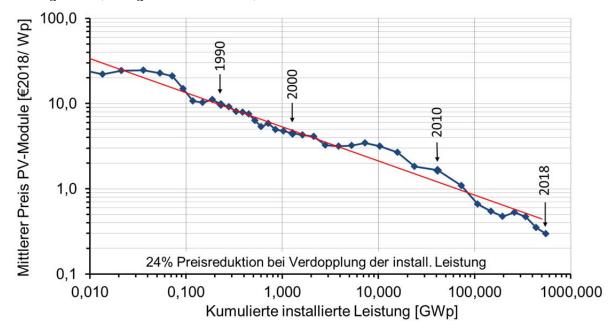


Abbildung 3: Historische Entwicklung der Preise für PV-Module (PSE AG/Fraunhofer ISE, Datenquelle: Strategies Unlimited/Navigant Consulting/EuPD). Die Gerade zeigt den Trend der Preisentwicklung.

4.2 Einspeisevergütung

Die Energiewende erfordert massive Investitionen in regenerative Erzeugungskapazitäten für Sonnen- und Windstrom. Damit ein Investor heute ein PV-Kraftwerk baut, benötigt er eine Abnahmegarantie über die wirtschaftliche Nutzungsdauer des Kraftwerks zu einer festen Vergütung. Ansonsten wird er seine Investition aufschieben, weil die bisherige Entwicklung weitere Kostenreduktionen bei PV-Kraftwerken erwarten lässt (Deflationseffekt). Da alle PV-Kraftwerke auch noch zur gleichen Zeit Strom produzieren, wäre der teurere Strom aus dem älteren Kraftwerk in der Zukunft nicht mehr konkurrenzfähig.

Den Ausbau in Erwartung niedrigerer Preise zu verschieben, wäre in Anbetracht des fortschreitenden Klimawandels nicht nur zynisch, sondern würde darüber hinaus die Dynamik der Kostensenkung verlangsamen. Grundlage für den Ausbau der PV bildeten die verschiedenen Fassungen des EEG seit dem Jahr 2000.

Das EEG legt nach seiner Novelle 2017 einen Ausbaukorridor für den Anteil der EE am Bruttostromverbrauch fest und versucht, den PV-Ausbau gleichzeitig zu fördern und zu behindern:

- PV-Anlagen dürfen seit 2010 auf Ackerland nur in 110 m-Korridoren entlang von Bundesautobahnen und Schienenwegen errichtet werden
- die Größe von PV-Freiflächenanlagen ist seit 2012 auf 10 MW begrenzt

Fakten zur PV.docx 26.03.20 9 (99)

- die Leistung von PV-Anlagen muss seit 2012 entweder auf 70% ihrer Nennleistung gedrosselt werden oder durch den Netzbetreiber abregelbar sein
- Eigenverbrauch aus PV-Anlagen wird seit 2014 oberhalb einer Bagatellgrenze (ca. 10 kW Anlagen-Nennleistung) mit einer Abgabe von 40% der aktuellen EEG-Umlage belegt (Abschnitt 4.6), d.h. die PV-Stromgestehungskosten steigen um ca. 2,7 €ct/kWh
- Anlagen erhalten seit 2016 nur bis zu einer Nennleistung von 100 kW eine feste Einspeisevergütung; für Anlagen mit einer Nennleistung von 100-750 kW besteht die Pflicht zur Direktvermarktung
- neue Anlagen ab einer Nennleistung von 750 kW sind seit 2017 zur Teilnahme an Ausschreibungen verpflichtet und dürfen nicht zur Eigenversorgung beitragen; das jährliche Ausschreibungsvolumen ist begrenzt

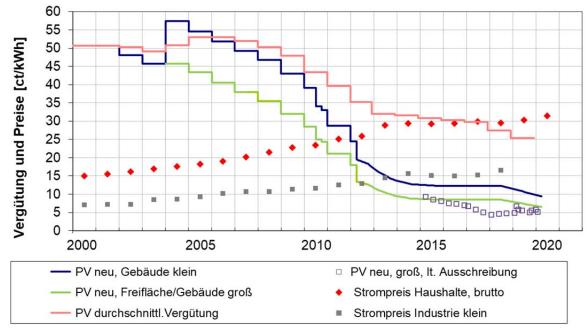


Abbildung 4: EEG-Vergütung für PV-Strom nach dem Datum der Inbetriebnahme des Kraftwerks, mittlere Vergütung in den Ausschreibungen der Bundesnetzagentur, Strompreise und durchschnittliche Vergütung für PV-Strom, Daten aus [BMWi1], [BDEW6], [BMWi5]

Die Einspeisevergütung für kleine Dachanlagen, die bis einschließlich **Januar 2020** in Betrieb gehen, beträgt abhängig von der Anlagengröße bis zu **9,87 ct/kWh** für 20 Jahre. Für Anlagen mittlerer Größe von 750 kW bis 10 MW wird die Einspeisevergütung über Ausschreibungen festgesetzt. Die Ausschreibungsrunde der Bundesnetzagentur zum Gebotstermin 1. Februar 2018 hat den bisher niedrigsten mittleren Zuschlagswert von 4,33 ct/kWh ermittelt.

Zum Vergleich: Die Ausschreibung für Strom aus onshore-Windkraft zum gleichen Gebotstermin hat einen Durchschnittspreis von 4,60 ct/kWh erbracht. International wurde PV-Strom an Standorten mit hoher Solarstrahlung bereits zu Tiefstpreisen von 1,75 (Brasilien) bis 2 \$ct/kWh (USA) angeboten. Für das geplante Atomkraftwerk "Hinkley C",

Fakten zur PV.docx 26.03.20 10 (99)

das im Jahr 2025 in Großbritannien in Betrieb gehen soll, wurde eine Einspeisevergütung von umgerechnet 12 ct/kWh zzgl. Inflationsausgleich über die Dauer von 35 Jahren zugesagt.

Die Einspeisevergütung für PV-Strom sinkt schneller als bei jeder anderen regenerativen Stromquelle, in den letzten 15 Jahren ca. 80% bei Kleinstanlagen und 90% bei Anlagen mittlerer Größe.

Der Eigenstrom-Nutzer kann nicht die volle Differenz zwischen seinem Brutto-Strompreis (für Bezug aus dem Netz) und der EEG-Vergütung (als Schätzgröße für seine Stromgestehungskosten) als "Gewinn" betrachten. Zum einen steigert der Eigenverbrauch die Fixkosten pro extern bezogener Kilowattstunde. Wenn die gleichen Anschlusskosten auf eine geringere Strombezugsmenge verteilt werden, verteuert sich der Strombezug (ct/kWh). Auch ist zu beachten, dass bei Stromentnahme aus einer PV-Anlage für den Eigenverbrauch Steuern und Abgaben anfallen können, abhängig von der steuerlichen Einordnung der Anlage. Eigenverbrauch aus Anlagen größer 10 kWp, die ab August 2014 in Betrieb gehen, wird mit einem Teil der EEG-Umlage belastet.

Ab dem Jahr 2020 werden die jeweils ältesten Anlagen nach und nach aus der EEG-Vergütung ausscheiden, weil die 20-jährige Bindungsfrist ausläuft. Sie werden aber noch weiter Strom liefern, dessen Gestehungskosten wegen niedriger Betriebskosten und fehlender Brennstoffkosten ("Grenzkosten") alle anderen fossilen oder erneuerbaren Quellen unterbietet.

4.3 Preisbildung an der Strombörse und der Merit Order Effekt

Für die Abschätzung der Erlöse aus dem Verkauf von PV-Strom wird ein mittlerer Strompreis ermittelt, auf Basis der an der Leipziger Strombörse (European Energy Exchange AG, EEX) erzielten Preise (Abbildung 5). Die laufende Preisfindung an der Börse erfolgt nach dem Prinzip des "Merit Order". Die Verkaufsangebote der Stromerzeuger für bestimmte Strommengen, in der Regel durch die jeweiligen Grenzkosten definiert, werden nach Preisen aufsteigend sortiert. Die Kaufangebote der Stromabnehmer werden absteigend sortiert. Der Schnittpunkt der Kurven ergibt den Börsenpreis für die gesamte gehandelte Menge. Das teuerste Angebot, das zum Zuge kommt, bestimmt somit die Gewinnmargen der kostengünstigeren Anbieter.

Die Einspeisung von Solarstrom hat gesetzlichen Vorrang, somit steht sie am Anfang der Angebotspreisskala. Mit fiktiven Grenzkosten gleich 0 kommt Solarstrom immer zum Zug. Wenn aber Solarstrom kommt, kommt er massiv in der Tageskernzeit, wenn die Last – und mit ihr früher auch der Strompreis - die Mittagsspitze erreicht. Dort verdrängt er überwiegend teure Spitzenlastkraftwerke (besonders Gaskraftwerke und Pumpspeicher). Diese Verdrängung senkt den gesamten resultierenden Börsenstrompreis und führt zum Merit-Order-Effekt der PV-Einspeisung (Abbildung 6). Mit den Preisen sinken die Einnahmen aller konventionellen Stromerzeuger (Kernkraft, Kohle, Gas), aber auch die Einnahmen für Strom aus EE (Solarstrom, Wind-, Wasserkraft). Weiterhin verringert Solarstrom die Auslastung insbesondere der klassischen Spitzenlastkraftwerke (Gas, Wasser).

Fakten zur PV.docx 26.03.20 11 (99)

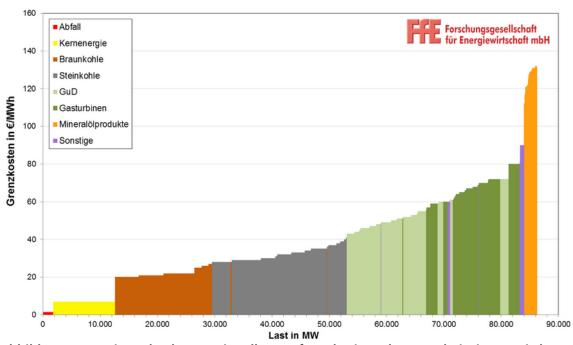


Abbildung 5: Merit Order konventioneller Kraftwerke im Jahr 2018 bei einem mittleren CO₂-Zertifikatspreis von 18 €/t [FFE]

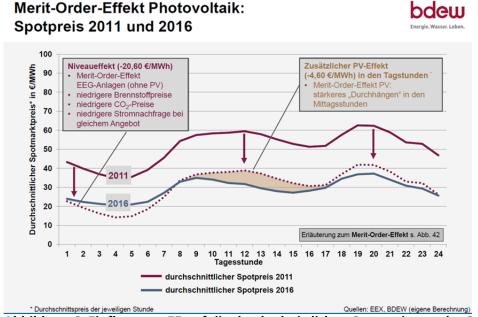


Abbildung 6: Einfluss von EE auf die durchschnittlichen Spotpreise an der Strombörse [BDEW2]

Die zunehmende Einspeisung von EE-Strom, gesunkene Kohlepreise und ein Überangebot an CO₂-Zertifikaten haben die Strompreise an der Börse massiv gesenkt (Abbildung 7). PV-Strom erzielt an der Strombörse im Jahresmittel einen Marktwertfaktor von ca. 1, d.h. dass die erzielten Erlöse pro kWh dem durchschnittlichen Börsenstrompreis entspre-

Fakten zur PV.docx 26.03.20

chen. Bei Windstrom liegt der Marktwertfaktor um 0,9 [ÜNB]. Mit weiterem Zubau volatiler EE wird deren Marktwertfaktor mittelfristig sinken, weil das Stromangebot zu Zeiten hoher Einspeisung wächst. Für PV wird ein Absinken auf 0,8 bis 2030 erwartet [ZSW]. Mit zunehmender Einspeisung von EE-Strom wurde die Leipziger Strombörse zu einer Residualstrombörse. Sie generiert einen Preis für die bedarfsgerechte Ergänzung der erneuerbaren Stromerzeugung und bildet nicht mehr den Wert des Stroms ab.

4.4 Ermittlung der Differenzkosten

Die Vergütung für PV-Stromeinspeisung nach EEG wird jährlich von den Übertragungsnetzbetreibern ermittelt. Die Differenzkosten sollen die zu deckende Lücke zwischen Vergütung und Erlösen für PV-Strom erfassen. Nach einem Maximum von fast 7 ct/kWh sank der Börsenwert des Stroms zur Differenzkostenermittlung auf unter 4 ct/kWh im Jahr 2015 (Abbildung 7). Die zunehmende Einspeisung von PV-Strom und Windstrom senkt die Börsenpreise über den Merit-Order-Effekt und erhöht damit paradoxerweise die rechnerischen Differenzkosten; je mehr PV installiert wird, umso teurer erscheint nach dieser Methode die kWh PV-Strom in der Förderung.

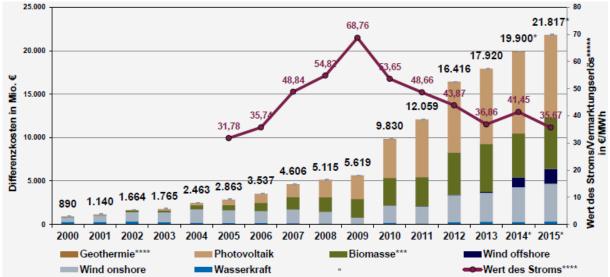


Abbildung 7: Entwicklung des für die Wertermittlung genutzten mittleren Börsenstrompreises und der daraus resultierenden Differenzkosten [BDEW2]

Abbildung 8 zeigt die Entwicklung der Differenzkosten für die Vergütung des erzeugten PV-Stroms. Nach einem starken Anstieg bis zum Jahr 2014 hat sich der Betrag zwischen 9 und 10 Mrd. € stabilisiert.

Fakten zur PV.docx 26.03.20

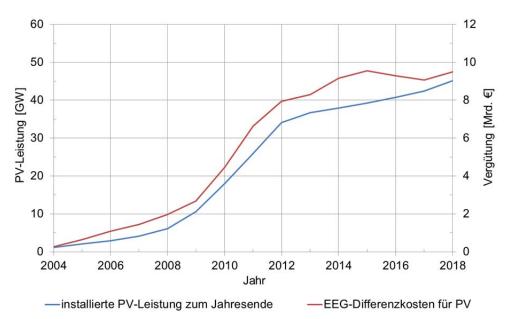


Abbildung 8: PV-Ausbau und Vergütungssumme, Daten aus [BMWi1],[BMWi5]

Eine Untersuchung der Friedrich-Alexander-Universität Erlangen-Nürnberg hat gezeigt, dass in den Jahren 2011 bis 2018 insgesamt 157 Mrd. € an EEG Differenzkosten angefallen sind, während in der gleichen Zeit Kosteneinsparungen von 227 Mrd. € durch die Einspeisung von PV- und Windstrom realisiert wurden [FAU]. Unter dem Strich sparten die Verbraucher somit Kosten in Höhe von 71 Mrd. €.

4.5 Privilegierte Verbraucher

Die Politik definiert, wer den Umstieg auf erneuerbare Energien finanzieren muss [BAFA]. Sie hat entschieden, energieintensive Industriebetriebe mit einem hohen Stromkostenanteil weitgehend von der EEG-Umlage zu befreien. Im Jahr 2018 wurde damit knapp die Hälfte des Industrieverbrauchs privilegiert (Abbildung 9). Diese umfassende Befreiung erhöht die Belastung für andere Stromkunden, insbesondere für Privathaushalte, auf die knapp 30% des gesamten Stromverbrauchs entfällt.

Die Privilegierung hat den Anstieg der EEG-Umlage pro kWh verstärkt (Abschnitt 5.5). Dabei profitiert die energieintensive Industrie von der preissenkenden Wirkung des PV-Stroms an der Börse zu Spitzenlastzeiten. Damit fließt ein Teil der PV-Umlage indirekt der energieintensiven Industrie zu: "Energieintensive Unternehmen, die größtenteils von der EEG-Umlage befreit sind bzw. nur einen ermäßigten Satz von 0,05 ct/kWh zahlen, profitieren vom Merit Order Effekt am stärksten. Bei ihnen überkompensiert die preissenkende Wirkung durch den Merit Order Effekt die Kosten für die EEG-Umlage bei weitem." [IZES] Die stromintensive Industrie profitiert von der Energiewende, ohne sich nennenswert an ihren Kosten zu beteiligen.

Fakten zur PV.docx 26.03.20 14 (99)

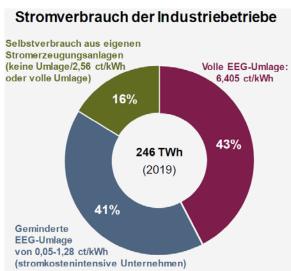


Abbildung 9: Stromverbrauch der Industrie und EEG-Umlage 2019 [BDEW6]

4.6 EEG-Umlage

Die Differenz zwischen Vergütungszahlungen und Verkaufserlösen für EE-Strom, ergänzt um weitere Positionen, werden über die EEG-Umlage ausgeglichen (Abbildung 10). Die Umlage tragen jene Stromverbraucher, die sich nicht befreien lassen können. Für das Jahr 2020 wurde die EEG-Umlage auf **6,76 ct/kWh** festgelegt. Letztverbraucher müssen auf die Umlage noch 19% Umsatzsteuer entrichten.

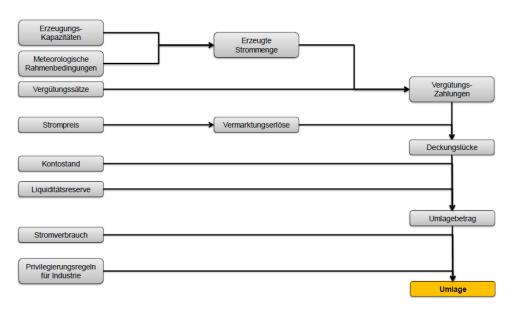


Abbildung 10: Übersicht zu Einflussfaktoren und Berechnung der EEG-Umlage [ÖKO]

Abbildung 11 zeigt das Auseinanderdriften zwischen EEG-Umlage und EEG-Auszahlungssumme seit der Einführung des Umlagemechanismus auf Basis der Börsens-

Fakten zur PV.docx 26.03.20 15 (99)

trompreise am EEX-Spotmarkt im Jahr 2010, der zunehmenden Umlagebefreiung für die energieintensive Industrie und anderen Maßnahmen. Dabei wurde der Anstieg der Differenzkosten bereits durch die börsenpreissenkende Wirkung der PV-Stromeinspeisung künstlich verstärkt.

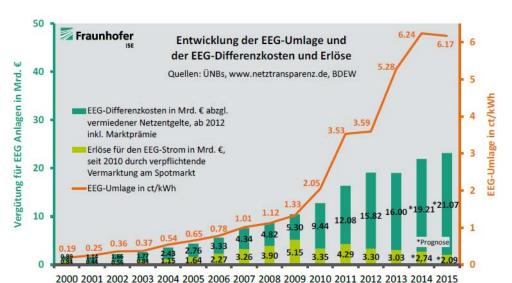


Abbildung 11: Entwicklung der EEG-Umlage und der EEG-Differenzkosten [ISE9]

Die EEG-Umlage wird aufgrund ihrer Festlegung durch folgende Faktoren erhöht:

1. steigende "privilegierte" Strommengen

Weil die stromintensive Industrie von der Umlage praktisch befreit ist, tragen kleinere Verbraucher, also Haushalte sowie industrielle und gewerbliche Verbraucher Mehrkosten in Milliardenhöhe

- 2. der Merit Order Effekt und die tageszeitliche Einspeisung von PV-Strom Die Einspeisung von PV-Strom zu Tageszeiten mit ehemals höchsten Börsenstrompreisen senkt diese besonders wirksam (Kapitel 4.3), zum Vorteil großer Verbraucher. Sie erhöht aber gleichzeitig die Differenz zwischen Einspeisevergütung und Börsenpreis, der die Grundlage für die Berechnung der Umlage darstellt, zum Nachteil kleiner, umlagepflichtiger Verbraucher.
- 3. der Merit Order Effekt und die Überproduktion von Strom Seit Jahren wird in Deutschland zunehmend mehr Strom produziert als notwendig (Kapitel 6), und zwar durch fossile und nukleare Kraftwerke mit geringeren Grenzkosten als teure Spitzenlastkraftwerke. Dieses Überangebot senkt den Börsenstrompreis über den Merit Order Effekt und verdrängt Spitzenlastkraftwerke aus dem Erzeugungsmix.
- 4. sinkender Stromverbrauch durch Effizienzmaßnahmen Maßnahmen zur effizienteren Nutzung von elektrischer Energie (z.B. Energiesparlampen) senken den Strombezug und erhöhen damit die Umlage pro verbrauchter kWh
- 5. Mehraufwand durch den Direktvermarktungszwang
 Der Zwang zur Direktvermarktung erzeugt einen administrativen Mehraufwand, der für die Stromproduzenten durch eine erhöhte Vergütung ausgeglichen werden muss
 6. steigende Produktion von Strom aus EE, soweit kein Eigenverbrauch

Fakten zur PV.docx 26.03.20 16 (99)

Der an sich erwünschte Ausbau der EE-Stromerzeugung erhöht zumindest kurzfristig die Umlage, sowohl direkt, weil mehr Einspeisevergütung ausgezahlt wird, als auch indirekt über den Preisverfall von Emissionszertifikaten, der zu einem billigeren Stromangebot fossiler Kraftwerke führt.

5. Subventionen und Strompreise

5.1 Wird PV-Strom subventioniert?

Nein, die Förderung erfolgt über eine selektive Verbrauchsumlage, die zum Teil auch für selbst hergestellten und verbrauchten PV-Strom erhoben wird.

Die Investitionsanreize für die PV-Stromerzeugung kommen nicht aus öffentlichen Mitteln. Zwar werden in verkürzten Darstellungen oft Summen über die vergangene und künftige Einspeisevergütung für PV-Strom in dreistelliger Milliardenhöhe gebildet und als "Subvention" deklariert. Eine Subvention ist aber definiert als eine Leistung aus öffentlichen Mitteln, während das EEG eine Umlage vorsieht: Energieverbraucher zahlen eine Zwangsabgabe für die - notwendige und beschlossene - Transformation unseres Energiesystems. Diese Sichtweise wurde auch von der EU-Kommission bestätigt. Die Höhe der Umlage entspricht auch nicht der gesamten Vergütung, sondern den Differenzkosten. Auf der Kostenseite betragen die kumulierten Differenzkosten der Einspeisevergütung für PV-Strom bis einschließlich 2018 nach Angaben des BMWi ca. 82 Mrd. €.

Der Nutzen von PV-Strom wird - für die Berechnung der EEG-Umlage - über den Börsenstrompreis bemessen. Nach dieser Methode wird sein Nutzwert systematisch unterschätzt: zum einen beeinflusst der PV-Strom den Börsenpreis längst in die gewollte Richtung, nämlich nach unten (vgl. Kap. 4.3). Zum anderen blendet der Börsenpreis gewichtige externe Kosten der fossilen und nuklearen Stromerzeugung aus (Abschnitt 5.2). Bezogen auf die Vollkosten der fossilen und nuklearen Stromerzeugung von ca. 10 ct/kWh schrumpfen die Mehrkosten der PV-Einspeisevergütung so schnell, dass es bereits im Jahr 2013 einen ersten Schnittpunkt gab. Die Differenzkosten schrumpfen gegen Null und werden danach negativ.

Damit sichert uns der EE-Ausbau langfristig eine Energieversorgung zu vertretbaren Kosten, da abzusehen ist, dass wir uns fossile und nukleare Energie nicht mehr lange leisten können. Unsere Industrie braucht eine Versorgungsperspektive, ebenso die Privathaushalte.

Die Strompolitik kann hier aus den bitteren Erfahrungen des Wohnungsbaus lernen. Weil dort eine umfassende Sanierung des Bestandes bisher nicht angestoßen wurde, müssen heute viele einkommensschwache Haushalte Heizkostenzuschüsse aus der Sozialkasse beziehen, die dann teilweise an ausländische Öl- und Gaslieferanten abfließen. Was sind die Kosten einer unterlassenen Energiewende? Ohne diese Zahl zu kennen, fällt es schwer, die Kosten der Wende zu bewerten.

Fakten zur PV.docx 26.03.20 17 (99)

5.2 Wird die fossile und nukleare Stromerzeugung subventioniert?

Ja.

Die Politik beeinflusst die Strompreise aus fossilen und nuklearen Kraftwerken. Politische Entscheidungen definieren den Preis von CO₂-Zertifikaten, die Auflagen zur Filterung von Rauch oder zur Endlagerung von CO₂, die Besteuerung von Atomstrom oder die Versicherungs- und Sicherheitsauflagen für Kernkraftwerke. Die Politik legt damit fest, inwieweit Stromverbraucher die schwer fassbaren Risiken und Lasten fossiler und nuklearer Stromerzeugung tragen. Bei einer konsequenteren Einpreisung dieser Kosten wird es voraussichtlich dazu kommen, dass die PV-Stromerzeugung den Strommix verbilligt. Bis wir so weit sind, wird fossiler und nuklearer Strom zu Preisen verkauft, die seine externen Kosten verschleiern und in die Zukunft abschieben.

Fossile Stromgewinnung wird entgegen früherer Planung derzeit kaum durch Kosten für CO₂-Zertifikate belastet, bei Zertifikatspreisen um 5-25 €/t CO₂ [Abbildung 12]. Nach Berechnungen des Umweltbundesamtes verursacht jedoch die Emission einer Tonne CO₂ Schäden von rund 180 Euro. Bezogen auf die Treibhausgasemissionen Deutschlands im Jahr 2016 entspricht dies Kosten von rund 164 Mrd. Euro [UBA3].

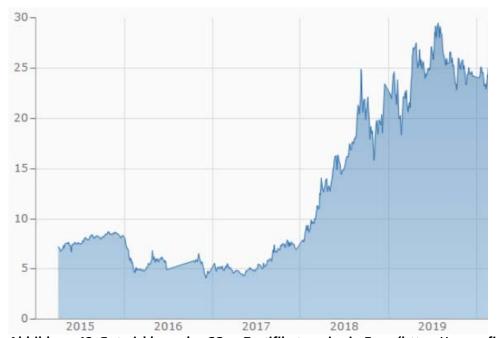


Abbildung 12: Entwicklung der CO₂ – Zertifikatspreise in Euro (https://www.finanzen.net)

Die tatsächlichen Kosten und Risiken der fossilen und nuklearen Stromgewinnung sind derzeit nicht überschaubar. Sie entstehen größtenteils in der Zukunft (CO₂-induzierte Klimakatastrophe, Nuklearunfälle, Endlagerung von Atommüll, Nuklearterrorismus, Ewigkeitslasten), ein Vergleich ist deshalb schwierig. Die Risiken der Atomkraft werden von Fachleuten allerdings so hoch eingeschätzt, dass keine Versicherung oder Rückversicherung der Welt sich zutraut, Policen anzubieten. Eine Studie der Versicherungsforen Leipzig beziffert die Deckungssumme für das Risiko "Super-GAU" auf 6 Billionen Euro,

Fakten zur PV.docx 26.03.20 18 (99)

welche abhängig von der Aufbauperiode dieser Deckungssumme die Kilowattstunde in einer Spanne von rund 0,14 Euro bis 67,30 Euro verteuern würde [VFL]. In Folge "versichert" im Wesentlichen der Steuerzahler die Atomindustrie. Dies erfolgt zwangsweise, denn die Deutschen sind seit vielen Jahren mehrheitlich gegen die Kernenergie, und in unbestimmter Höhe, weil es keine Festlegung für eine Schadensregulierung gibt. Damit kann hier von einer Subvention gesprochen werden, deren Zukunftslast nicht abzusehen ist.

Der EURATOM-Vertrag aus dem Jahr 1957 erlaubt EU-Mitgliedsstaaten Subventionen für Kernkraftwerke, die in anderen Sektoren aus Wettbewerbsgründen nicht zulässig sind. Diese Ausnahmeregelung hat bei der Finanzierung des britischen Atomkraftwerks Hinkley Point C durch großzügige garantierte Einspeisevergütungen aus Steuergeldern eine wichtige Rolle gespielt [FÖS3]. Das Projekt war auf eine Rendite von 9% über eine Laufzeit von 60 Jahren kalkuliert.

Nach einer Schätzung der IEA wurden fossile Energien im Jahr 2012 weltweit mit 544 Mrd. Dollar subventioniert [IEA4]. Eine Studie des Internationalen Währungsfonds schätzt die weltweiten Subventionen für Kohle, Erdöl und Erdgas inkl. externer Kosten im Jahr 2015 auf 5,1 Billionen US\$ [IWF].

5.3 Subventionieren Mieter gut situierte Hauseigentümer?

Nein.

Diese beliebte Schlagzeile, hier zitiert aus der "Zeit" vom 8.12.2011, ist eine verzerrte Darstellung. Die Kosten der Umstellung unseres Energiesystems auf EE werden – mit der politisch gewollten Ausnahme der stromintensiven Industrie – nach dem Verursacherprinzip auf alle Stromverbraucher umgelegt, inklusive Haushalte, und dort inklusive Eigentümer und Mieter. Diese Kosten decken neben der PV auch Windkraft und andere EE ab. Alle Stromkunden können ihren Stromverbrauch durch die Auswahl und Nutzung ihrer Geräte beeinflussen, viele Gemeinden bieten kostenlose Energiesparberatung und Zuschüsse für die Anschaffung effizienter Neugeräte. Stromtarife, die mit dem Verbrauch steigen, wären ein geeignetes Mittel, um einkommensschwache Haushalte zu entlasten und gleichzeitig Energieeffizienz zu belohnen.

Anlagen der Leistungsklasse unter 10 kWp, die häufig von Hauseigentümern erworben werden, machen in der Summe weniger als 15% der gesamten installierten Leistung aus (Abbildung 22). Sehr große Anlagen in der Leistungsklasse oberhalb 500 kWp kommen hingegen auf ca. 30%. Größere Anlagen werden häufig über Bürgerbeteiligungen oder Fonds finanziert, an denen sich natürlich auch Mieter beteiligen können.

Fakten zur PV.docx 26.03.20

5.4 Verteuert PV-Stromerzeugung den Strom für Privathaushalte?

Ja. Privathaushalte tragen viele zusätzliche Lasten auf ihrer Stromrechnung. Der Gesetzgeber legt die Berechnungsgrundlage und den Verteiler für die EEG-Umlage sowie weitere Steuern und Abgaben fest, mit zurzeit nachteiligen Effekten für Privathaushalte.

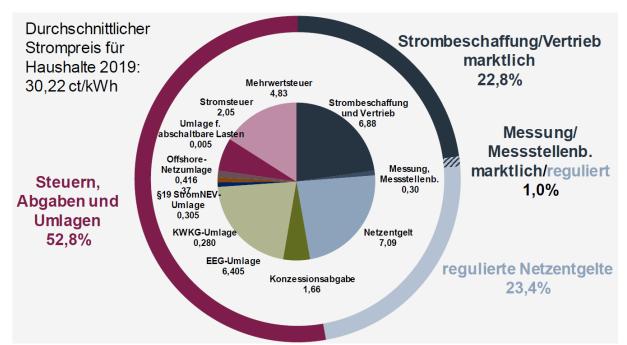


Abbildung 13: Zusammensetzung des durchschnittlichen Haushaltsstrompreises im Jahr 2019 (KWKG: Kraft-Wärme-Kopplungsgesetz; Strom-NEV: Entlastung stromintensiver Industriebetriebe; Konzessionsabgabe: Entgelte für Nutzung öffentlicher Wege [BDEW6])

Ein Musterhaushalt mit einem Jahresverbrauch von 3.900 Kilowattstunden zahlte im Jahr 2019 einen Strompreis von ca. **30,22 ct/kWh** [BDEW6], Abbildung 13 zeigt eine beispielhafte Preisstruktur. Die Stromsteuer wurde 1999 eingeführt, um laut Gesetzesbegründung Energie durch höhere Besteuerung zu verteuern, die Einnahmen fließen überwiegend in die Rentenkasse. Auf Stromsteuer und EEG-Umlage entrichten Privathaushalte Mehrwertsteuer.

Fakten zur PV.docx 26.03.20 20 (99)

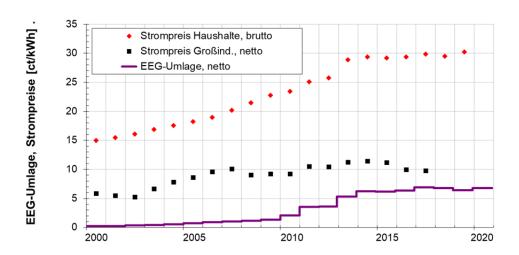


Abbildung 14: Entwicklung von Brutto-Strompreisen für Haushalte, von Netto-Strompreisen für industrielle Großabnehmer und Entwicklung der EEG-Umlage, Daten aus [BMWi1]

In vielen Ländern Europas liegt der Strompreis für Privathaushalte deutlich niedriger als in Deutschland. Berücksichtigt man jedoch die Kaufkraft der Länder, so liegt Deutschland im europäischen Mittelfeld. Hinzu kommt die hohe Versorgungssicherheit: in Niedrigpreisländern wie Rumänien oder Bulgarien sind Stromausfälle an der Tagesordnung.

5.5 Verteuert PV den Strom für die Industrie?

Ja und nein, es gibt klare Gewinner und Verlierer.

Nach Erhebungen des Verbandes der Industriellen Energie- und Kraftwirtschaft e.V. (VIK) hat sich der Strompreis für Mittelspannungskunden seit dem Jahr 2009 auseinanderentwickelt, Gewinner waren die Unternehmen, die sich von der EEG-Umlage befreien lassen können (VIK Basisindex, Abbildung 15). Der VIK Endpreisindex für nichtprivilegierte Unternehmen liegt, vor allem wegen der darin berücksichtigten EEG-Umlage, deutlich über dem Basis-Index.

Fakten zur PV.docx 26.03.20 21 (99)

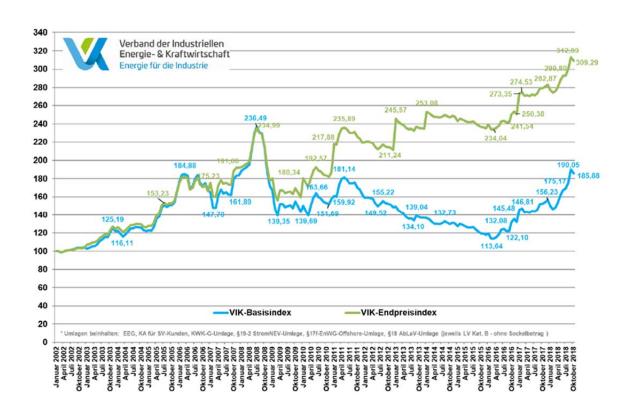


Abbildung 15: VIK Strompreisindex Mittelspannung [VIK]

6. Exportieren wir massiv PV-Strom ins europäische Ausland?

Nein, der gewachsene Exportüberschuss kommt v.a. aus Kohlekraftwerken.

Abbildung 16 zeigt den seit 2011 zunehmenden Stromexport im Saldo [ISE4]. Die Monatswerte der Energy Charts (www.energy-charts.de) zeigen, dass der Exportüberschuss ausgerechnet im Winter auffällig hoch liegt, also in Monaten mit einer besonders niedrigen PV-Stromproduktion. Der mittlere, bei der Stromausfuhr erzielte Preis pro kWh unterscheidet sich geringfügig vom mittleren Einfuhrpreis.

Dass der deutsche Kraftwerkspark vermehrt für den Export produziert, dürfte auch mit den geringen Erzeugungskosten für Kohlestrom, insbesondere den geringen CO₂-Zertifikatspreisen (Abschnitt 5.2) der letzten Jahre zusammenhängen.

Fakten zur PV.docx 26.03.20 22 (99)

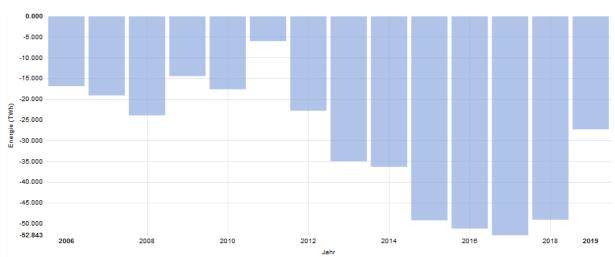


Abbildung 16: Stromexport (als negative Werte) für Deutschland [ISE4]

7. Kann eine neue PV-Anlage gute Renditen bringen?

Ja.

Grundsätzlich können neu errichtete PV-Anlagen sowohl durch Einspeisung von Strom in das Netz als auch durch Eigenverbrauch Erträge bringen. Obwohl der Gesetzgeber beide Geschäftsmodelle durch ein Bündel von Maßnahmen beschneidet (Abschnitt 4.6), sind aufgrund der stark gesunkenen Preise für PV-Module gute Renditen möglich. Dies gilt auch für PV-Anlagen ohne oder mit nur geringem Eigenverbrauch [HTW].

Eigenverbrauch lohnt umso mehr, je größer die Differenz zwischen den Bezugskosten für Strom und den Stromgestehungskosten der PV-Anlage ausfällt. Bei Systemen ohne Speicher hängt das Eigenverbrauchspotenzial von der Koinzidenz zwischen Erzeugungsund Verbrauchsprofil ab, Haushalte erreichen abhängig von der Anlagengrößen 20-40% bezogen auf den erzeugten Strom [Quasch]. Größere Anlagen erhöhen den Deckungsgrad des gesamten Strombedarfs mit PV-Strom, verringern jedoch den Eigenverbrauchsanteil. Gewerbliche oder industrielle Verbraucher erreichen besonders dann hohe Eigenverbrauchswerte, wenn ihr Verbrauchsprofil am Wochenende nicht wesentlich einbricht (bspw. Kühlhäuser, Hotels und Gaststätten, Krankenhäuser, Serverzentren, Einzelhandel). Energiespeicher- und Transformationstechnologien bieten erhebliche Potenziale zur Steigerung der Eigenverbrauchs (vgl. Abschnitt 18.3).

Der Ertrag einer Anlage fällt in sonnenreichen Regionen höher aus als in Gegenden mit geringerer Einstrahlung. Tatsächlich überträgt sich der regionale Unterschied in der Einstrahlung nicht 1:1 auf den spezifischen Ertrag (kWh/kWp, Abschnitt 24.4), weil bspw. auch die Betriebstemperatur der Module oder die Dauer der Schneeauflage eine Rolle spielen.

Fakten zur PV.docx 26.03.20 23 (99)

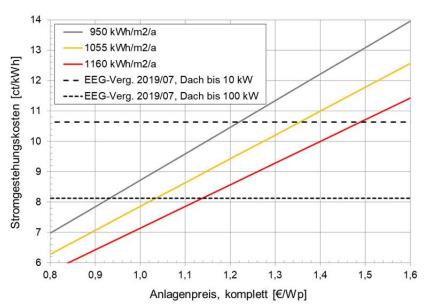


Abbildung 17: Grobe Abschätzung der Stromgestehungskosten für PV-Anlagen unter verschiedenen Einstrahlungsbedingungen

Zur groben Abschätzung der abgezinsten (diskontierten), nicht-inflationsbereinigten Stromgestehungskosten (Abbildung 17) wurden folgende Annahmen getroffen:

- optimale Ausrichtung der Fläche (ca. Süd 30°)
- mittlere Jahressumme der horizontalen Globalstrahlung in Deutschland 1088 kWh/m²/a
- Performance Ratio (Abschnitt 24.6) 85%
- jährliche Anlagendegradation bezüglich Ertrag 0,5%
- Nutzungsdauer 20 Jahre
- Ifd. jährliche Kosten 1% des Anlagenpreises
- Inflationsrate 0%
- nominaler kalkulatorischer Zinssatz 3% (Mittelwert aus Eigen- und Fremdkapital)

Die Abschätzung der Stromgestehungskosten (LCOE – Levelized Costs of Electricity) erfolgt auf Basis der Kapitalwertmethode. Dabei werden die laufenden Ausgaben und die LCOE über den angegebenen Zinssatz auf den Zeitpunkt der Inbetriebnahme abgezinst (diskontiert). Die Angabe der LCOE erfolgt nicht inflationsbereinigt, um den Vergleich mit der nominal konstanten, aber real sinkenden Einspeisevergütung zu erleichtern.

Bei vollständiger Finanzierung durch Eigenkapital entspricht der kalkulatorische Zinssatz der erzielbaren Rendite. Zum Vergleich: die Bundesnetzagentur hat die Eigenkapitalrenditen für Investitionen in die Strom- und Gasnetze für Neu- bzw. Erweiterungsinvestitionen auf 9,05 Prozent vor Körperschaftsteuer festgelegt [BNA1].

Die Verwertung des Stroms ab dem 21. Betriebsjahr ist heute nicht kalkulierbar. Voraussichtlich werden viele Anlagen noch erhebliche Strommengen bei marginalen laufenden Kosten produzieren, aber für die Kalkulation spielen die zukünftige Eigenverbrauchsfähigkeit ebenso wie die zukünftige Preis- bzw. Vergütungsgestaltung der EVUs und Eingriffe durch den Gesetzgeber eine Rolle.

Fakten zur PV.docx 26.03.20 24 (99)

Die Rendite einer PV-Anlage ist auch während der EEG-Vergütungsdauer nicht risikofrei. Weder Herstellergarantien noch Anlagen-Versicherungen senken das Investorenrisiko auf Null.

8. Erzeugt die PV-Branche nur Arbeitsplätze in Asien?

Nein, aber Deutschland hat in den letzten Jahren viele Arbeitsplätze in der PV-Branche verloren.

Die PV-Branche beschäftigte im Jahr 2018 ca. 24000 Menschen in Deutschland [BSW]. Zum Vergleich: 2015 arbeiteten noch knapp 21000 Menschen im Braunkohlebergbau und in den Braunkohlekraftwerken [ÖKO1]. Zur deutschen PV-Branche zählen Betriebe aus den Bereichen

- 1. Materialherstellung: Solarsilicium, Metallpasten, Verbinderdrähte, Kunststofffolien, Solarglas, Glasbeschichtung
- 2. Herstellung von Zwischen- und Endprodukten: Module, Kabel, Wechselrichter, Montagegestelle, Nachführsysteme
- 3. Maschinenbau für die Zell- und Modulproduktion
- 4. Installation (v. a. Handwerk)

Nennenswerte Anteile am Weltmarkt hielten im Jahr 2019 die deutschen Wechselrichterhersteller mit ca. 10%, Siliciumhersteller Wacker, Silberpastenhersteller (Heraeus) und Hersteller von Produktionsanlagen.

In den letzten Jahren sind in Deutschland viele Arbeitsplätze durch Firmenschließungen und Insolvenzen verloren gegangen, betroffen sind neben den Zell- und Modulproduzenten auch der Maschinenbau und die Installateure. Die Hoffnung, dass die Kombination aus EEG, Investitionsbeihilfen in den neuen Bundesländern und Forschungsförderung ausreichen, um Deutschland als einen weltweit führenden Produktionsstandort für PV-Zellen und Module zu etablieren, schien sich noch im Jahr 2007 zu erfüllen, als eine deutsche Firma die internationale Rangliste nach Produktionsvolumen anführte. Seither haben deutsche Hersteller dramatisch an Marktanteilen verloren, als Folge der entschiedenen Industriepolitik im asiatischen Raum und der dort generierten massiven Investitionen in Produktionskapazitäten. Die Lohnkosten spielen in dieser Entwicklung eine untergeordnete Rolle, da die PV-Produktion einen sehr hohen Automatisierungsgrad erreicht hat. Schlüsselfertige Produktionslinien, die sehr gute PV-Module liefern, kann man seit einigen Jahren "von der Stange" kaufen, was einen schnellen Technologietransfer ermöglicht hat.

Effektive Gesetze zur Einspeisevergütung haben in Deutschland und Europa massive Investitionen in PV-Kraftwerke ausgelöst, allein in Deutschland bis einschließlich 2014 in der Größenordnung von 90 Mrd. Euro [DLR2]. Hier fehlte aber die wirtschaftspolitische Flankierung, um auch bei Produktionskapazitäten Investitionen in einem wettbewerbsfähigen GW-Format zu generieren. Dafür ist es China und anderen asiatischen Staaten durch Schaffung attraktiver Investitions- und Kreditbedingungen gelungen, viele Milliar-

Fakten zur PV.docx 26.03.20 25 (99)

den inländisches und ausländisches Kapital für den Aufbau von großskaligen Produktionslinien zu mobilisieren.

Trotz der hohen Importquote bei PV Modulen bleibt ein großer Teil der mit einem PV-Kraftwerk verbundenen Wertschöpfung im Land. Wenn man annimmt, dass 80% der hier installierten PV-Module aus Asien kommen, diese Module ca. 50% der Kosten eines PV-Kraftwerks ausmachen (Rest v.a. Wechselrichter und Installation) und die Kraftwerkskosten ca. 70% der Stromgestehungskosten ausmachen (Rest: Kapitalkosten, Wartung), dann fließen über die Modulimporte knapp 30% der Einspeisevergütung nach Asien. Zusätzlich ist zu berücksichtigen, dass ein Teil der asiatischen PV-Produktion Anlagen aus Deutschland nutzt. Langfristig werden sinkende Herstellkosten von PV-Modulen auf der einen, steigende Frachtkosten und lange Frachtzeiten auf der anderen Seite die Wettbewerbsposition für die Modulherstellung in Deutschland verbessern. Bei einem jährlich Zubau von 10 GW PV werden nach einer Studie der EuPD Research knapp 70000 direkt Beschäftigte in Vollzeit benötigt, mit Schwerpunkt Installation und Wartung [EuPD].

9. Zeigen große deutsche Energieversorger Interesse an PV?

Die in Deutschland betriebene PV-Leistung befand sich noch 2016 überwiegend im Eigentum von Privatpersonen, Landwirten und Gewerbebetrieben. Die großen Kraftwerksbetreiber (die "Großen 4" in Abbildung 18) hielten magere 0,2%. Woher kommt diese Abneigung?

- Der Stromverbrauch in Deutschland ist seit dem Jahr 2007 tendenziell rückläufig bis stabil. Der Zubau von Erzeugungskapazitäten im Bereich der EE verringert deshalb die Auslastung des bestehenden Kraftwerkparks oder erfordert steigenden Stromexport.
- 2. Weil PV v.a. zu Spitzenlastzeiten Strom produziert, werden insbesondere konventionelle Spitzenlast-Kraftwerke seltener und in geringerem Umfang benötigt, ihre Auslastung und Rentabilität sinkt besonders stark. Paradoxerweise werden aber gerade flexible Kraftwerke mit schnell steuerbarerer Leistung im Zug der Energiewende immer mehr benötigt.
- 3. Wenn PV-Kraftwerke Strom liefern, liefern sie tagsüber, zu Zeiten höchster Nachfrage. Das senkt den Strompreis an der Börse, der sich nach den Börsenregeln auf alle momentan produzierenden Kraftwerke überträgt (Abschnitt 4.3). Früher konnten die großen Kraftwerksbetreiber billigen Grundlaststrom zur Mittagszeit sehr lukrativ verkaufen. Seit 2011 führte aber die PV zu Preissenkungen an der Börse und damit zu massiven Gewinneinbrüchen.
- 4. Weil die PV-Stromproduktion fluktuiert, bereitet die Trägheit von nuklearen und älteren kohlebetriebenen Kraftwerken bisherige Renditeträger mit zunehmendem PV-Ausbau Schwierigkeiten. Besonders eklatante Folge sind gelegentliche negative Strompreise an der Börse: Kohle wird verbrannt, und der Erzeuger muss gleichzeitig für die Stromabnahme bezahlen. Dort, wo Regelung zwar technisch

Fakten zur PV.docx 26.03.20 26 (99)

- möglich, aber in der notwendigen Frequenz nicht vorgesehen ist, führt sie zu erhöhtem Anlagenverschleiß.
- 5. Der Übergang von zentralen Kohle- und Kernkraft-Großanlagen auf Schwarmerzeugung durch PV erfordert radikal neue Geschäftsmodelle. Im Segment der Windkraft, insbesondere Offshore, ist dies weniger der Fall.

Während große Kraftwerksbetreiber bisher wenig Interesse an PV-Installationen gezeigt haben, passen große Windprojekte, vor allem im Offshore-Bereich, viel besser in ihr Geschäftsmodell.

Mit der dramatischen Verschlechterung ihrer Geschäftsbilanzen kam Bewegung in die Szene der "Großen 4". RWE hat 2/3 seiner Mitarbeiter in die Unternehmenstochter "innogy" transferiert, die das Geschäft mit der Energiewende bündelt, darunter auch PV-Stromerzeugung. Aus dem Halbjahresbericht 2017 ist ersichtlich, dass Innogy Ende 2016 weniger als 100 MW PV betrieben hat. E.On hat sich mit der Ausgründung von Uniper von seinem traditionellen Gas- und Elektrizitätsgeschäft getrennt und konzentriert sich auf EE, darunter Solarstrom. Vattenfall verkauft seine deutsche Braunkohlesparte und will sich auf Strom aus EE konzentrieren, dazu gehört seit 2016 auch PV. EnBW hat sich 2013 nach eigener Darstellung neu in Richtung Energiewende fokussiert und betreibt Stand Februar 2019 PV-Anlagen mit einer Nennleistung von insgesamt 70 MW. Anfang 2019 gab EnBW Pläne bekannt, das erste PV-Kraftwerk in Deutschland ohne EEG-Unterstützung zu errichten. Konkret handelt es sich dabei um ein 175 MW Projekt in Brandenburg [EnBW]. Vattenfall möchte ebenfalls ohne EEG-Förderung auf Flächen aus dem Braunkohle-Tagebau in der Lausitz PV installieren.

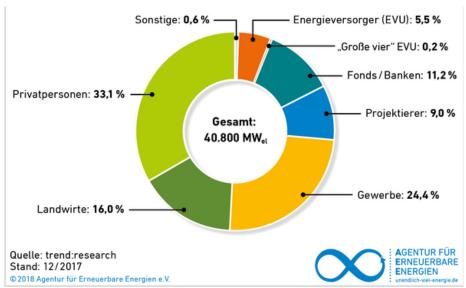


Abbildung 18: Anteile der Eigentümer an der Ende 2016 betriebenen PV-Kraftwerksleistung [AEE3]

Viele der ca. 1000 kommunalen Energieversorger in Deutschland haben die Herausforderung der Energiewende frühzeitig erkannt und reagieren mit neuen Produkten und integrativen Konzepten, bspw. "virtuellen Kraftwerken" (Abbildung 19).

Fakten zur PV.docx 26.03.20 27 (99)

Abbildung 19: Konzept für ein virtuelles Kraftwerk der Stadtwerke München [SWM]

10. Welche Fördermittel gehen in die PV-Forschung?

Ein Blick in die historischen Zahlen (Abbildung 20) zeigt, dass erneuerbare Energien und Energieeffizienz in den Fokus der Energieforschung rücken. Nachfolgende Abbildung 21 zeigt die von den zuständigen Ministerien bewilligten Fördermittel für die PV-Forschung.

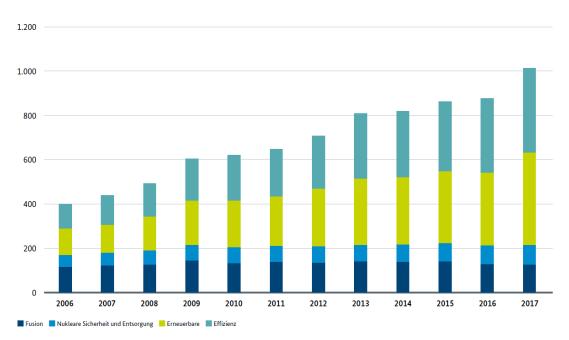


Abbildung 20: Ausgaben im Energieforschungsprogramm des Bundes nach Themen in Mio. € [BMWi6]

Fakten zur PV.docx 26.03.20 28 (99)

Abbildung 21: Fördermittel für PV-Forschung nach Technologien [BMWi6]

Zum Vergleich: auch nach dem beschlossenen Ausstieg aus der Kernenergie zwingen europäische Verträge Deutschland, das Programm EURATOM jährlich mit hohen zweistelligen Millionenbeträgen zu finanzieren, im Jahr 2019 mit ca. 80 Mio. € [FÖS4]. Die meisten Gelder von EURATOM fließen in die Fusionsforschung.

11. Überlastet PV-Strom unser Energiesystem?

11.1 Übertragung und Verteilung

Über 98 Prozent der Solarstromanlagen in Deutschland sind an das dezentrale Niederspannungsnetz angeschlossen (Abbildung 22) und erzeugen Solarstrom verbrauchsnah [BSW].

Solarstrom wird somit überwiegend dezentral eingespeist und stellt kaum Anforderungen an einen Ausbau des innerdeutschen Übertragungsnetzes. Eine hohe PV-Anlagendichte in einem Niederspannungs-Netzabschnitt kann an sonnigen Tagen dazu führen, dass die Stromproduktion den Stromverbrauch in diesem Abschnitt übersteigt. Transformatoren speisen dann Leistung zurück in das Mittelspannungsnetz. Bei sehr hohen Anlagendichten kann die Transformatorstation dabei an ihre Leistungsgrenze stoßen. Eine gleichmäßige Verteilung der PV-Installationen über die Netzabschnitte verringert den Ausbaubedarf.

Der dezentrale, flächige Charakter der Stromerzeugung durch PV kommt einer Aufnahme und Verteilung durch das bestehende Stromnetz entgegen. Große PV-Kraftwerke oder lokale Häufungen kleinerer Anlagen in dünn besiedelten Gebieten erfordern stellenweise eine Verstärkung des Verteilnetzes und der Trafostationen.

Der weitere PV-Ausbau sollte geografisch noch verbrauchsgerechter erfolgen, um die Verteilung des Solarstroms zu erleichtern. Pro Einwohner haben Brandenburg oder Mecklenburg-Vorpommern beispielsweise 3- bis 4 mal mehr PV-Leistung installiert als bspw. das Saarland, Sachsen oder Hessen [AEE2].

29 (99) Fakten zur PV.docx 26.03.20

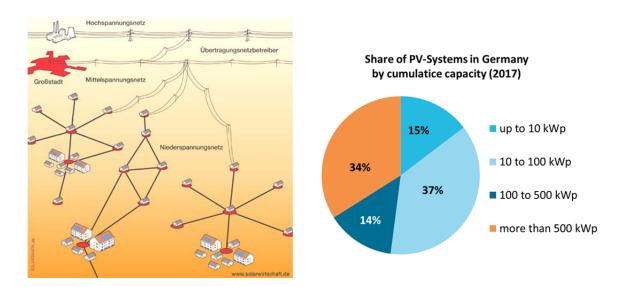


Abbildung 22: Links: Einspeisung von PV-Strom [BSW], Rechts: Verteilung der installierten PV-Leistung nach Anlagengröße [ISE10]

Laut einer Studie der Agora Energiewende wird das deutsche Stromnetz auch bei einer installierten PV-Leistung von knapp 100 GW im Jahr 2030 die erforderlichen Strommengen transportieren können [AGORA1]. Dazu sind vor allem Maßnahmen zur Modernisierung und besseren Nutzung der Bestandsnetze erforderlich, jedoch kein nennenswerter Ausbau.

Wenn aktuell von Netzengpässen die Rede ist, geht es nur selten um Photovoltaik (Abbildung 23). "Durch den windkraftbedingten Stromüberschuss im Norden, einem Stromdefizit durch Kraftwerksstilllegungen (u. a. AKW) im Süden und einem schleppenden Netzausbau kommt es im deutschen Übertragungsnetz häufig zu Netzengpässen. Da der zur Behebung der vorhandenen Netzengpässe notwendige Netzausbau jedoch noch eine geraume Zeit in Anspruch nehmen wird, ist der Einsatz von Redispatch-Maßnahmen auch in absehbarer Zeit und ggf. verstärkt nötig. Redispatch bezeichnet den vom Übertragungsnetzbetreiber (ÜNB) angeordneten Eingriff in den marktbasierten, ursprünglich geplanten Fahrplan der Kraftwerke (Dispatch) zur Verlagerung der Einspeisung, um Leistungsüberlastungen im Stromnetz vorzubeugen (präventiver Redispatch) bzw. zu beheben (kurativer Redispatch). Dabei wird "vor" einem Engpass die Einspeisung von Elektrizität verringert (negativer Redispatch) und "hinter" einem Engpass erhöht (positiver Redispatch). "[BDEW4] Im Jahr 2017 beliefen sich die Gesamtkosten für Redispatch-Maßnahmen auf 1,4 Mrd. €.

Fakten zur PV.docx 26.03.20 30 (99)



Abbildung 23: Abgeregelte elektrische Energie [BNA]

11.2 Volatilität

11.2.1 Solarstrom-Produktion ist planbar

Die Erzeugung von Solarstrom ist heute dank verlässlicher nationaler Wettervoraussagen sehr gut planbar (Abbildung 24). Aufgrund der dezentralen Erzeugung können regionale Änderungen in der Bewölkung nicht zu gravierenden Schwankungen der deutschlandweiten PV-Stromproduktion führen.

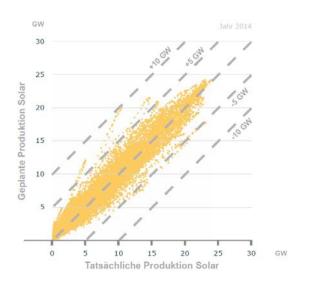


Abbildung 24: Stündliche tatsächliche und geplante Stromproduktion im Jahr 2014 [ISE4]

Fakten zur PV.docx 26.03.20 31 (99)

11.2.2 Spitzenproduktion deutlich kleiner als installierte PV-Leistung

Aufgrund von technisch bedingten Verlusten (Performance Ratio PR <= 90%, vgl. Abschnitt 24.6) und uneinheitlicher Wetterlage ist deutschlandweit eine reale Stromgeneration oberhalb 70% der installierten Nennleistung (vgl. Kap. 3) sehr unwahrscheinlich, vgl. auch Abbildung 25.

Eine Abregelung auf der Ebene der einzelnen Anlage auf 70% ihrer Nennleistung führt zu Einnahmeverlusten von ca. 2-5%. Eine gesetzliche Regelung, die diese Abregelung für kleine Anlagen faktisch vorschreibt, trat 2012 in Kraft.

11.2.3 Sonnen- und Windstrom ergänzen sich

Klimabedingt korrelieren in Deutschland hohe Sonneneinstrahlung und hohe Windstärken negativ auf allen Zeitskalen von Stunden bis Monaten.

Auf <u>Stundenbasis</u> gelangten im Jahr 2017 bei einer installierten Leistung von 42 GW PV und 56 GW Windkraft am Jahresende in der Summe nur selten mehr als 45 GW Leistung in das Stromnetz (Abbildung 25).

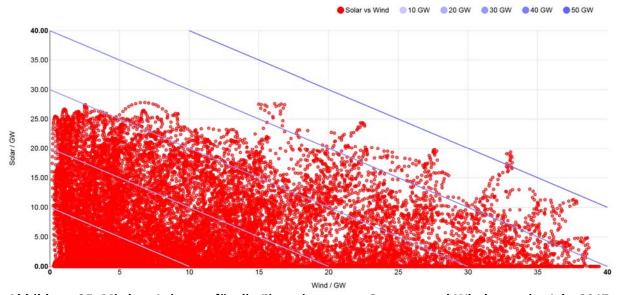


Abbildung 25: Mittlere Leistung für die Einspeisung von Sonnen- und Windstrom im Jahr 2017, 15-Minuten-Werte [ISE4]

Abbildung 26 zeigt die Stromproduktion PV + Wind für Deutschland im Jahr 2017 auf Stundenbasis. Während die installierte Leistung PV + Wind zum Jahresende bei ca. 98 GW lag, erfolgten nur 3% der Stromproduktion oberhalb einer Leistung von 30 GW.

Fakten zur PV.docx 26.03.20 32 (99)

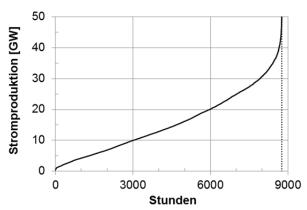


Abbildung 26: Stromproduktion PV + Wind in aufsteigend geordneten Stundenwerten für das Jahr 2017

Auch auf <u>Tagesbasis</u> führt die Kombination von PV- und Windstrom zu einer Stabilisierung des Ertrags. Während die relative mittlere absolute Abweichung der Tagesstromproduktion vom arithmetischen Mittel im Jahr 2017 bei PV 58% und bei Wind 56% betrug, lag der Wert für PV + Wind nur bei 38%.

Abbildung 27 zeigt die <u>Monatswerte</u> der Stromproduktion aus PV, Windkraft und ihre Summe, sowie die jeweiligen linearen Trendlinien für die Jahre 2014 - 2017. Die relativen Abweichungen von der Trendlinie sind für PV und Wind in Summe deutlich geringer als für die einzelnen Sektoren.

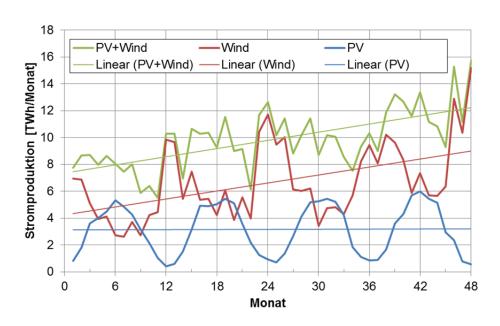


Abbildung 27: Monatliche PV- und Windstromproduktion der Jahre 2014-2017 [ISE4]

Fakten zur PV.docx 26.03.20 33 (99)

11.3 Regelbarkeit

Mit steigender Leistung wird PV zunehmend als stabilisierende Regelgröße in die Pflicht genommen. Die EEG-Novellierung zum 1.1.2012 fordert auch für Anlagen am Niederspannungsnetz eine Teilnahme am Einspeisemanagement über Fernsteuerung durch den Netzbetreiber oder über automatische Abregelung bei 70% der Wirkleistung. Gemäß der Niederspannungsrichtlinie VDE AR-N-4105, seit dem 1.1.2012 in Kraft, müssen Wechselrichter netzstützende Funktionen bereitstellen.

"...eine überwiegend dezentrale und verbrauchsnahe PV-Einspeisung in die Verteilnetze reduziert Kosten für den Netzbetrieb, insbesondere im Hinblick auf das Übertragungsnetz. Ein weiterer Vorteil der PV-Einspeisung ist, dass PV-Anlagen zusätzlich zur Einspeisung von Wirkleistung prinzipiell weitere Netzdienstleistungen (z.B. lokale Spannungsregelung) kostengünstig bereitstellen können. Sie eignen sich hervorragend zur Integration in übergeordnete Netzmanagement-Systeme und können einen Beitrag zur Verbesserung der Netzstabilität und Netzgualität leisten." [ISET]

11.4 Konflikte mit trägen fossilen und nuklearen Kraftwerken

Das Erzeugungsprofil von PV-Strom passt so gut zu dem Lastprofil des Stromnetzes, dass der gesamte Strombedarf im Band von 40-80 GW auch bei weiterem Ausbau der PV in den nächsten Jahren jederzeit über dem PV-Stromangebot liegen wird. Allerdings nehmen die Konflikte mit trägen Kraftwerken zu, die einer schwankenden Residuallast aus technischen und wirtschaftlichen Gründen nur sehr eingeschränkt folgen können. Ältere Kohlekraftwerke, insbesondere Braunkohlekraftwerke, können keine Regelenergie in einer wirtschaftlich vertretbaren Weise beisteuern. Kernkraftwerke sind technisch in der Lage, Leistungsgradienten von bis zu 2%/min und Leistungshübe von 50 bis 100% zu fahren [ATW2], bisher werden sie aus wirtschaftlichen Gründen jedoch selten gedrosselt. Grundsätzlich müssen jedoch die volatilen Erzeuger mit ihren vernachlässigbaren Grenzkosten Vorfahrt erhalten.

Diese ungelösten Konflikte können kurzzeitig zu deutlicher Überproduktion und hohem Stromexport bei geringen bis negativen Börsenstrompreise führen, wie das Beispiel in Abbildung 28 zeigt. Die gesamte Woche war sonnig, mit starkem Wind am Montag und Dienstag. An Feiertagen wie dem 1. Mai und an Wochenenden fällt die Tageslast geringer aus als an Werktagen. Kohle- und Kernkraftwerke lieferten auch dann noch Strom, als der am Vortag prognostizierte Preis negative Werte aufwies.

Während Hitzeperioden war es in der Vergangenheit durch fossile und nukleare Kraftwerke zu einer kritischen Erwärmung der als Kühlreservoir genutzten Flüsse gekommen. Die in Deutschland installierte Photovoltaik hat dieses Problem beseitigt und kann solche Situationen auch in Nachbarländern wie Frankreich entspannen, weil sie die Auslastung der fossilen und nuklearen Kraftwerke besonders an Sommertagen grundsätzlich reduziert.

Fakten zur PV.docx 26.03.20 34 (99)

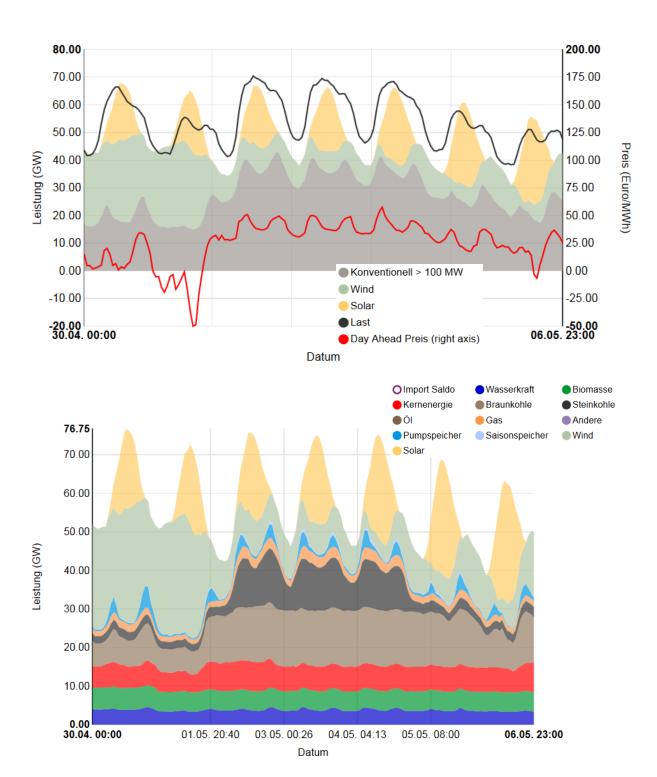


Abbildung 28: Beispiel für den Verlauf von Börsenstrompreisen, konventioneller und regenerativer Stromerzeugung der 18. Kalenderwoche im Mai 2018 [ISE4]

Fakten zur PV.docx 26.03.20 35 (99)

11.5 Gefährdet volatiler Solarstrom die Versorgungssicherheit?

Nein.

Die Versorgungssicherheit für Letztverbraucher hat parallel zum Ausbau der Photovoltaik seit dem Jahr 2006 sogar zugenommen (Abbildung 29). Verstärkte Investitionen in den Ausbau der Übertragungsnetze haben zu dieser Entwicklung beigetragen.

Elektrizität: Versorgungsstörungen nach § 52 EnWG je Netzebene in Minuten

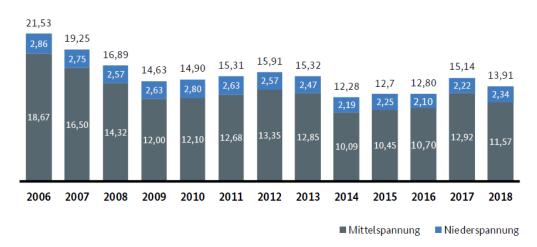


Abbildung 29: System Average Interruption Duration Index (SAIDI) für verschiedene Netzebenen in Minuten/Jahr [BNA]

11.6 Muss der PV-Ausbau auf Speicher warten?

Nein, nicht in den nächsten Jahren.

Investitionen in Speicher lohnen sich erst, wenn häufig große Preisdifferenzen für Strombezug auftreten, sei es an der Strombörse oder bei Endabnehmern. Derzeit werden Investitionen in Speicher, konkret Pumpspeicher, sogar zurückgestellt, weil kein wirtschaftlicher Betrieb möglich ist.

Erst ein weiterer Ausbau von PV und Windkraft wird die EEX-Preise häufiger und massiver senken. Auf der anderen Seite wird eine ausstiegsbedingte Verknappung des Atomstroms und eine Verteuerung des Kohlestroms durch CO₂-Zertifikate oder -Steuern die EEX-Preise zu anderen Zeiten anheben. Diese Preisspreizung schafft die Grundlage für einen rentablen Speicherbetrieb. Wird die Spreizung über Tarifgestaltung an den Endabnehmer weitergereicht, werden Speicher auch für ihn interessant.

Eine Studie der AGORA Energiewende benennt 12 Maßnahmen zur Modernisierung der Netze, um bis zum Jahr 2030 u.a. ca. 100 GW installierte PV-Leistung aufzunehmen [AGORA1].

Fakten zur PV.docx 26.03.20 36 (99)

12. Verschlingt die Produktion von PV-Modulen mehr Energie als diese im Betrieb liefern können?

Nein.

Der Erntefaktor (Energy Returned on Energy Invested, ERoEI oder EROI) beschreibt das Verhältnis der von einem Kraftwerk bereitgestellten Energie und der für seine Errichtung aufgewendeten Energie. Die Energierücklaufzeit oder energetische Amortisationszeit gibt die Zeitspanne an, die ein Kraftwerk betrieben werden muss, um die investierte Energiemenge bereitzustellen.

Erntefaktor und Energierücklaufzeit von PV-Anlagen variieren mit Technologie und Anlagenstandort. Eine neuere Studie aus dem Jahr 2017 [Raug] ermittelte für PV-Kraftwerke mit wafer-basierten Modulen auf Basis von gemessenen PV-Erträgen aus der Schweiz und einer angenommenen Lebensdauer von 25 Jahren einen Erntefaktor von 9-10, entsprechend einer Energierücklaufzeit von 2,5 – 2,8 Jahren. Windkraftanlagen weisen deutlich kürzere Energierücklaufzeiten auf, sie liegen gewöhnlich unter einem Jahr.

13. Gibt es in Deutschland genügend Flächen für PV?

Ja, und zwar ohne nennenswerte Konflikte mit der Landwirtschaft.

Bei der Analyse von Potenzialen wird zwischen einem theoretischen, einem technischen und einem wirtschaftlich-praktischen bzw. umsetzbaren oder erschließbaren Potenzial unterschieden. Das **theoretische Potenzial** betrachtet die maximal mögliche Umsetzung einer Technologie auf Basis des gesamten Angebots (physikalische Überschlagsrechnung). Das **technische Potenzial** fällt geringer aus, weil es grundlegende technische Randbedingungen berücksichtigt (technische Überschlagsrechnung). Das **wirtschaftlich-praktische Potenzial** berücksichtigt alle relevanten Randbedingungen, insbesondere rechtliche (inkl. Naturschutz), ökonomische (inkl. Infrastruktur), soziologische (inkl. Akzeptanz), dazu bspw. konkurrierende Nutzung (bspw. Solarthermie und PV auf Dächern). Verschiedene Quellen ziehen etwas unterschiedliche Grenzen zwischen den Kategorien.

Eine Studie im Auftrag des Bundesministeriums für Verkehr und digitale Infrastruktur schätzt das Ausbaupotenzial an restriktionsfreien Freiflächen für PV auf 3164 km² [BMVI]. Bei einem Flächenverbrauch von 1,4 ha/MW_p nach aktuellem Stand der Technik [ZSW] bieten diese Flächen ein technisches Potenzial von **226 GW_p**.

Die landwirtschaftlich genutzte Fläche in Deutschland betrug im Jahr 2017 rund 16,7 Millionen Hektar (theoretisches Potenzial). Mit Agrophotovoltaik (APV) lassen sich Landwirtschaft und Stromproduktion auf derselben Fläche kombinieren (www.agrophotovoltaik.de). Eine Reihe von Nutzpflanzen zeigen kaum Ertragseinbußen bei reduzierter Einstrahlung, andere profitieren sogar. Wird die aktuelle Anbaufläche dieser beiden Pflanzenklassen in Deutschland als technisches Potenzial angenommen, so

Fakten zur PV.docx 26.03.20 37 (99)

ISE

entspricht dies einer Nennleistung von **1,7 TW**. Weltweit wird APV bereits im GW-Maßstab genutzt.

Gebäudehüllen, d.h. Dächer und Fassaden, bieten ein technisches Potenzial von mindestens **800 GW**_p. Dabei wurden nur Flächen berücksichtigt, die mindestens 500 kWh/(m²a) Einstrahlung empfangen. PV-Module können nicht nur auf bestehende Flach- oder Schrägdächer montiert werden, auch Produkte für die Gebäudeintegration (BIPV) sind kommerziell verfügbar. Dazu zählen PV-Dachziegel, PV-Dachfolien, Module für Kaltfassaden, Wärmedämm-Verbundsysteme (WDVS) mit PV, opake und transparente PV-Isoliergläser.

Der Braunkohletagebau hat in Deutschland eine Fläche von 1773 km² [UBA4] zerstört, mehr als die dreifache Fläche des Bodensees (theoretisches Potenzial). Wird ein Viertel dieser Fläche geflutet und mit schwimmender PV (FPV, von "Floating PV") belegt, so eröffnet sich ein technisches Potenzial von **55 GW**_p. Weltweit sind bereits über 1 GW_p an schwimmenden PV-Anlagen installiert.

Eine Studie des Umweltbundesamtes geht von 670 km² versiegelten Siedlungsflächen aus [UBA], entsprechend **134 GW**_p an technischem Potenzial für PV-Installationen. Hierzu zählen baulich geprägte Siedlungsflächen, jedoch ohne Gebäudeflächen und ohne Verkehrsflächen wie Straße oder Schiene. Ein Teil dieser Fläche lässt sich mit PV-Modulen als Schattenspender überdachen oder mit speziellen, befahrbaren Modulen belegen (UPV, von "Urbaner PV").

Weiteres Potenzial im GW-Maßstab bieten Lärmschutzwände, ausgesuchte Verkehrsflächen, Gleiskörper (RIPV, von "Road Integrated PV") und perspektivisch die Dächer von Elektrofahrzeugen (VIPV, von Vehicle Integrated PV").

Abbildung 30: Anwendungen für die Integration von Photovoltaik

Fakten zur PV.docx 26.03.20 38 (99)

Welcher Teil des technischen Potenzials auch wirtschaftlich und praktisch nutzbar ist, hängt von komplexen ökonomischen, regulativen und technischen Randbedingungen ab, hinzu kommen Fragen der Akzeptanz. Grundsätzlich wird integrierte PV, die mit der Hülle von Gebäuden, Verkehrswegen und Fahrzeugen verschmilzt, Flächen gemeinsam mit der Landwirtschaft nutzt oder Wasserflächen in gefluteten Tagebauen belegt, etwas höhere Stromgestehungskosten aufweisen als einfache Freiflächen-Kraftwerke. Dafür meidet integrierte PV Nutzungskonflikte und schafft Synergien, indem sie bspw. eine Gebäudefassade ersetzt, die Unterkonstruktion einer Lärmschutzwand nutzt oder die Reichweite von E-Fahrzeugen erhöht.

13.1 Konkurrieren Strom- und Lebensmittelproduktion auf Ackerflächen?

Nein. Zum einen können Lebensmittel und Strom auf derselben Fläche erzeugt werden, zum anderen werden auf 78% der landwirtschaftlichen Fläche in Deutschland gar keine Nahrungsmittel angebaut.

Agrophotovoltaik (APV) nutzt Flächen gleichzeitig für landwirtschaftliche Pflanzenproduktion (Photosynthese) und PV-Stromproduktion (Photovoltaik). APV deckt ein breites Spektrum in der Intensität der Landwirtschaft und im Mehraufwand für den PV-Anlagenbau ab. Es reicht von intensiver Ackerkultur mit speziellen PV-Montagesystemen bis zu extensiv genutztem Grünland mit marginalen Anpassungen auf der PV-Seite und hohem Potenzial für Ökosystemdienstleistungen. APV steigert die Flächeneffizienz und ermöglicht einen massiven Zubau an PV-Leistung, bei gleichzeitigem Erhalt fruchtbarer Ackerflächen für die Landwirtschaft oder in Verbindung mit der Schaffung artenreicher Biotope auf mageren Böden.

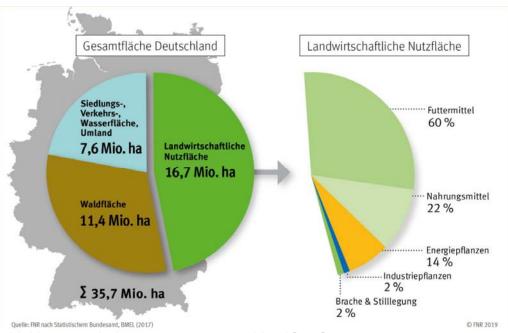


Abbildung 31: Flächennutzung in Deutschland [FNR]

Fakten zur PV.docx 26.03.20 39 (99)

Auf 14% der landwirtschaftlichen Fläche werden Energiepflanzen angebaut (**Fehler! Verweisquelle konnte nicht gefunden werden.**), insbesondere für die Herstellung von Biogas, Biodiesel/Pflanzenöl und Bioethanol [FNR]. Vergleicht man die Effizienz der Flächennutzung zur Stromproduktion, dann schneiden PV-Kraftwerke um Faktor 40 besser ab als Energiepflanzen. Silomais, der in Deutschland auf einer Fläche von ca. 1 Mio. ha angebaut wird, bringt 18 MWh_{el}/ha [FNR2], während es bei PV 700 MWh_{el}/ha sind.

13.2 Zerstören PV-Anlagen ökologisch wertvolle Flächen?

Nein, ganz im Gegenteil.

Wird eine Fläche aus der intensiven Landwirtschaft, bspw. aus dem Energiepflanzenanbau, herausgenommen, in Grünland umgewandelt und darauf eine PV-Freiflächenanlage (PV-FFA) errichtet, dann nimmt die Biodiversität grundsätzlich zu [BNE]. In PV-FFA wird nicht gedüngt, so dass weniger anspruchsvolle Pflanzen eine Chance erhalten. Die Einzäunung der PV-FFA schützt die Fläche gegen unbefugten Zutritt und freilaufende Hunde, was u.a. Bodenbrütern entgegenkommt. Weitere Verbesserungen können durch kleine Anpassungen der PV-Anlage erreicht werden. Vergrößerte Reihenabstände der Modultische, leicht erhöhte Aufständerung der Module, Einsaat von Wildpflanzenmischungen an Stelle von Grasmonokultur und behutsame Grünpflege lassen einen Biotop-Solarpark entstehen.

14. Finden PV-Kraftwerke Akzeptanz in der Bevölkerung?

Ja.

Die freie Skalierbarkeit von PV-Kraftwerken ermöglicht den dezentralen Ausbau, bis hinab zu sogenannten "Balkon-Modulen" ("Plug-in-PV") mit wenigen Hundert Watt Nennleistung. Die hohe Zahl von über 1,7 Mio. PV-Anlagen in Deutschland, davon ca. 60% Kleinanlagen mit Leistungen unterhalb 10 kW, zeigt, dass von diesen technischen Möglichkeiten ausgiebig Gebrauch gemacht wird.

Solaranlagen zählen nach einer repräsentativen Umfrage von Lichtblick zu den beliebtesten Kraftwerken. Abbildung 32 zeigt die Verteilung der Antworten auf die Frage "Wenn Sie an den Neubau von Anlagen zur Energiegewinnung in Deutschland denken: Auf welchen Arten von Anlagen sollte hier der Schwerpunkt liegen?".

Fakten zur PV.docx 26.03.20 40 (99)

Abbildung 32: Umfrageergebnisse zum Neubau von Kraftwerken, Daten aus [Licht2]

Auch aus Anwohnersicht sind PV-Kraftwerke die mit Abstand beliebtesten Kraftwerke, wie eine Umfrage der Agentur für Erneuerbare Energien zeigt (Abbildung 33). Die Beliebtheit steigt, wenn solche Kraftwerke in der eigenen Nachbarschaft praktisch erfahrbar sind.

Zur Stromerzeugung in der Nachbarschaft finden eher gut bzw. sehr gut ...

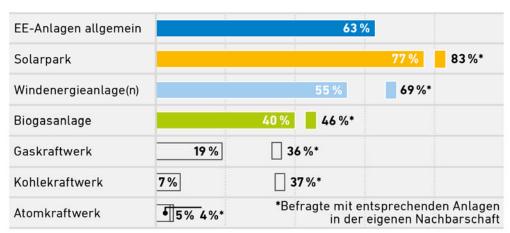


Abbildung 33: Umfrageergebnisse zur Akzeptanz verschiedener Kraftwerkstypen [AEE4]

Aus dem Blickwinkel nicht-privilegierter Stromverbraucher steht es weniger gut um die Akzeptanz des PV-Ausbaus an sich. Das überrascht nicht, führt doch die Ausgestaltung des EEG-Umlagemechanismus dazu, dass überwiegend private Haushalte und kleinere Betriebe die Kosten der Energiewende zu tragen haben (s. Abschnitt 4).

Fakten zur PV.docx 26.03.20 41 (99)

15. Arbeiten PV-Anlagen in Deutschland effizient?

Der nominelle Wirkungsgrad (s. Abschnitt 24.2) von kommerziellen waferbasierten PV-Modulen (d.h. Module mit Solarzellen auf Basis von Siliciumscheiben) aus neuer Produktion stieg in den letzten Jahren um ca. 0,3%-Punkte pro Jahr auf Mittelwerte von ca. 17,5% [ISE10] und Spitzenwerte von 22%. Pro Quadratmeter Modul erbringen sie damit eine Nennleistung von 175 W, Spitzenmodule bis 220 W.

PV-Anlagen arbeiten nicht mit dem nominellen Modulwirkungsgrad, weil im Betrieb zusätzliche Verluste auftreten. Diese Effekte werden in der sog. Performance Ratio (PR) zusammengefasst. Eine heute installierte PV-Anlage erreicht über das Jahr PR-Werte von 80-90%, inkl. aller Verluste durch erhöhte Betriebstemperatur, variable Einstrahlungsbedingungen, Verschmutzung und Leitungswiderständen, Wandlungsverlusten des Wechselrichters und Ausfallzeiten. Der von den Modulen gelieferte Gleichstrom wird von Wechselrichtern für die Netzeinspeisung angepasst. Der Wirkungsgrad neuer PV-Wechselrichter liegt aktuell um 98%.

In Deutschland werden je nach Einstrahlung und PR spezifische Erträge um 900-950, in sonnigen Gegenden über 1000 kWh/kWp erzielt. Pro Quadratmeter Modul entspricht dies ca. 150 kWh, bei Spitzenmodulen ca. 180 kWh. Ein durchschnittlicher 4-Personen-Haushalt verbraucht pro Jahr ca. 3500 kWh Strom, dies entspricht dem Jahresertrag von 23 m² neuen Modulen mittleren Wirkungsgrades. Die ungefähr nach Süden orientierte und mäßig geneigte Dachfläche eines Einfamilien-Hauses reicht somit rechnerisch aus, um den Jahresstrombedarf einer Familie in Summe über eine PV-Anlage mit ca. 15 Modulen zu erzeugen.

Auf flachen Dächern und im Freiland werden Module aufgeständert, um ihren Ertrag zu erhöhen. Wegen der dafür notwendigen Beabstandung belegen sie bei Südorientierung ungefähr das 2- bis 2,5-fache ihrer eigenen Fläche, abhängig vom Aufstellwinkel. Für das Jahr 2019 wurde für Freiflächenanlagen ein durchschnittlicher Flächenbedarf von 1,4 ha pro Megawatt installierte Leistung ermittelt, bei stark fallender Tendenz [ZSW]. Zum Vergleich: Bei Verstromung von Energiepflanzen liegt der auf die Einstrahlung bezogene Wirkungsgrad deutlich unter 1%. Dieser Wert sinkt weiter, wenn fossile organische Materie als Kohle, Öl oder Erdgas verstromt wird. Entsprechende Verbrennungs-Kraftwerke beziehen ihre Wirkungsgradangabe aber normalerweise auf die Konversion der bereits vorhandenen chemischen Energie im fossilen Energieträger. Für Kohlekraftwerke in Deutschland wird dann bspw. ein mittlerer Wirkungsgrad um 38% angegeben. Bei der Verbrennung von Biokraftstoffen in Fahrzeugen erreicht man auch nur bescheidene Effizienzen bezogen auf die eingestrahlte Energie und die Flächennutzung. Abbildung 34 vergleicht die Reichweiten von Fahrzeugen mit Verbrennungsmotor, deren Antriebsenergie jeweils auf einem Hektar Anbaufläche für Biokraftstoffe in einem Jahr gewonnen wurden, mit der Reichweite eines batterieelektrischen Fahrzeugs (E-Auto), dessen Strom aus einem PV-Kraftwerk auf gleicher Fläche stammt.

Fakten zur PV.docx 26.03.20 42 (99)

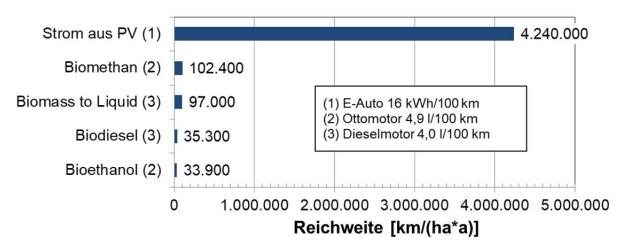


Abbildung 34: Fahrzeugreichweite mit dem Jahresertrag aus 1 ha PV-Kraftwerk (1) und von 1 ha Energiepflanzenanbau (2,3; Zahlen angepasst aus [FNR1])

In Südspanien oder Nordafrika lassen sich spezifische Erträge bis 1600 kWh/kWp erzielen, allerdings würden lange Leitungswege nach Deutschland zu Energieverlusten und Kostenaufschlägen führen. Abhängig von der Spannungsebene liegen die Leitungsverluste zwischen 0,5 - 5% pro 100 km. Über Leitungen zur Hochspannungs-Gleichstrom-Übertragung (HGÜ) lassen sich die Transportverluste auf knapp 0,3% pro 100 km reduzieren, dazu kommen Konversionsverluste. Eine 5000 km lange HGÜ-Leitung würde somit ca. 14% reine Leitungsverluste aufweisen.

15.1 Degradieren PV-Module?

Ja, aber sehr langsam.

Waferbasierte PV-Module altern so langsam, dass es eine Herausforderung für die Wissenschaftler darstellt, Leistungsverluste überhaupt nachzuweisen.

Eine Studie des Fraunhofer ISE an 44 größeren, qualitätsgeprüften Aufdach-Anlagen in Deutschland hat eine durchschnittliche jährliche Degradation der Nennleistung von ca. 0,15% ergeben [ISE2]. Die häufig getroffene Annahme von 0,5% Leistungsverlust pro Jahr erscheint in diesem Kontext sehr konservativ. Üblich sind Leistungsgarantien der Hersteller von 20-25 Jahren, vereinzelt auch bis 30 Jahre, für einen maximalen linearen Leistungsabfall von bspw. 20%.

Die genannten Werte beziehen keine Ausfälle aufgrund von Produktionsmängeln mit ein. Die deklarierte Nennleistung von Modulen bezieht sich meistens auf den Betrieb nach der Anfangsdegradation. Abhängig vom Material der Solarzellen kommt eine lichtinduzierte Degradation (LID) von 1-2% in den ersten Betriebstagen dazu, wie umfangreiche Messungen am Fraunhofer ISE ergeben haben.

Für viele Dünnschicht-Module liegen noch keine langjährigen Daten vor. Je nach Typ werden nennenswerte Anfangsdegradationen in den ersten Betriebsmonaten und saisonale Schwankungen der Leistung beobachtet.

Fakten zur PV.docx 26.03.20 43 (99)

15.2 Verschmutzen PV-Module?

Ja, aber die allermeisten Anlagen in Deutschland reinigt der nächste Regen wieder, so dass Schmutz praktisch keine Ertragseinbußen bewirkt. Problematisch sind Module mit sehr flachem Aufstellwinkel, naher Laubabwurf oder nahe Staubquellen.

15.3 Arbeiten PV-Anlagen selten unter Volllast?

Ja. Die Kennzahl "Volllaststunden" wird als Quotient aus der im Lauf eines Jahres tatsächlich erzeugten Energie und der Nennleistung des Kraftwerks (siehe Abschnitt 24.3) ermittelt. Aufgrund der Einstrahlungsbedingungen arbeiten PV-Anlagen nur etwas weniger als die Hälfte der insgesamt 8760 Jahresstunden, und dann auch meistens in Teillast. Die Übertragungsnetzbetreiber gehen in ihrem Trendszenario im Mittel von ca. 980 Vollbenutzungsstunden für PV-Freiflächen-Anlagen in Deutschland aus, bei Dachanlagen von 892 Stunden [ÜNB]. Die komplette Übersicht der Prognosen zu EE zeigt Abbildung 35.

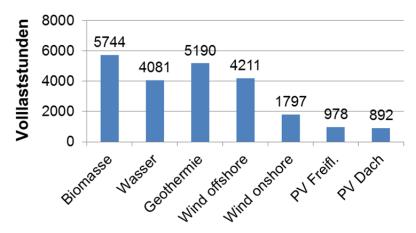


Abbildung 35: Prognostizierte Vollbenutzungsstunden für ganzjährig betriebene Anlagen, gemittelte Werte für die Jahre 2012 bis 2016, Daten aus [ÜNB]

Die mittlere Jahressumme der horizontalen Globalstrahlung in Deutschland für die Jahre 1998-2018 liegt gemäß Zahlen des Deutschen Wetterdienstes bei 1088 kWh/m²/a mit einem linearen Trend von +0,3%/a. Abbildung 36 zeigt die landesweite Verteilung für eine frühere Periode, mit damals 1055 kWh/m² mittlere Jahressumme. PV-Module werden zur Ertragsmaximierung mit einer Neigung von ca. 30-40° zur Horizontalen montiert und nach Süden ausgerichtet. Damit erhöht sich die Einstrahlungssumme bezogen auf die Modulebene um ca. 15%, bezogen auf die horizontale Einstrahlungssumme und ergibt im geografischen Mittel für Deutschland ca. 1250 kWh/m²/a.

Bei einer Performance Ratio (PR, siehe Abschnitt 24.6) von 85% und idealer Ausrichtung

Fakten zur PV.docx 26.03.20 44 (99)

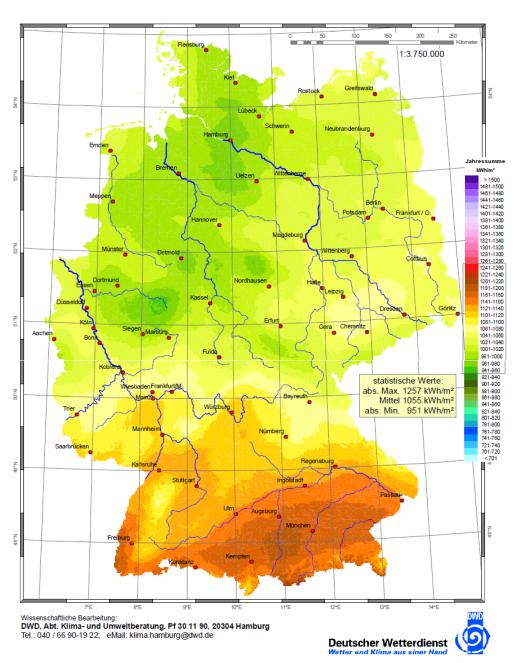


Abbildung 36: Horizontale jährliche Globalstrahlungssumme in Deutschland, gemittelt über den Zeitraum 1981-2010 [DWD]

wären damit im geografischen Mittel über Deutschland 1060 Volllaststunden zu erreichen. Weil nicht alle Dachanlagen ideal ausgerichtet sind und noch viele Anlagen mit kleineren PR arbeiten, liegt die tatsächliche mittlere Volllaststundenzahl etwas niedriger. Technische Verbesserungen der Module und der Installation können die nutzbare Einstrahlung, die PR, den Ertrag und damit die Zahl der Volllaststunden einer PV-Anlage anheben. Dazu zählen

- Nachführung (Abschnitt 18.3.1)
- bifaziale PV-Technologie

Fakten zur PV.docx 26.03.20 45 (99)

- Verringerung von Verlusten durch Verschattung
- Verringerung des Temperaturkoeffizienten der Solarzellen
- Verringerung der Betriebstemperatur der Module durch gute Hinterlüftung
- Verbesserung des Schwachlicht- und des Schräglichtverhaltens der Module
- Verringerung von Verlusten durch Schneeabdeckung und Verschmutzung
- frühzeitige Erkennung und Behebung von Minderleistung
- Verringerung von Degradation über die Lebensdauer

Bei Windkraftwerken steigt die Anzahl der Volllaststunden mit der Nabenhöhe. Nuklear, Kohle- und Gaskraftwerke können im Bedarfsfall fast durchgängig (1 Jahr = 8760 h) mit ihrer Nennleistung produzieren. Tatsächlich erreichten It. [BDEW1] bspw. Braunkohlekraftwerke 6640 und Steinkohle-KW 3550 Volllaststunden im Jahr 2007.

Fakten zur PV.docx 26.03.20 46 (99)

16. Liefert PV relevante Beiträge zum Klimaschutz?

16.1 Gefährdet der anthropogene CO₂-Ausstoß das globale Klima?

Ja. Die große Mehrheit der Fachleute sieht ein erhebliches Risiko.

Die zunehmende globale Erwärmung ist zweifelsfrei erwiesen [IPCC]. Im Vergleich zum präindustriellen Zeitalter ist die mittlere globale Temperatur um 0,8 °C angestiegen [IE-A2]. Die große Mehrheit der Wissenschaftsgemeinde geht davon aus, dass anthropogene Emissionen von CO₂ und anderen Treibhausgasen den Anstieg der atmosphärischen Treibhausgas-Konzentration und darüber den mittleren globalen Temperaturanstieg mit sehr hoher Wahrscheinlichkeit ("extremely likely") wesentlich verursachen. Im Mai 2013 hat die atmosphärische CO₂-Konzentration erstmals seit mindestens 800.000 Jahren den Wert von 400 ppm erreicht. Abbildung 37 und Abbildung 38 zeigen die bisherige Entwicklung der atmosphärischen CO₂-Konzentration und der globalen bzw. antarktischen Temperatur.

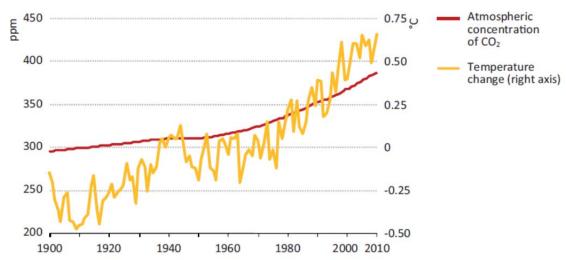


Abbildung 37: Entwicklung der atmosphärischen CO₂-Konzentration und der mittleren globalen Temperaturveränderung nach dem NASA Global Land-Ocean Temperature Index [IEA2].

Ein schneller globaler Temperaturanstieg gefährdet in einem noch wenig verstandenen Ausmaß die Stabilität des globalen Klimasystems, die Ernährungsgrundlage der Weltbevölkerung, küstennahe Siedlungsgebiete sowie die ohnehin unter hohem Druck stehende Diversität an Arten und Biotopen.

Fakten zur PV.docx 26.03.20 47 (99)

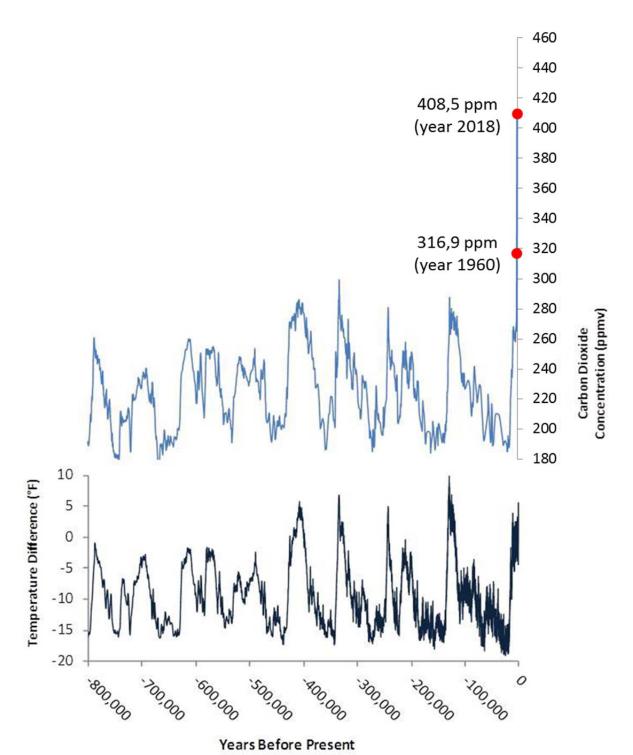


Abbildung 38: Schätzungen der atmosphärischen CO₂-Konzentration und der Temperatur in der Antarktis auf Basis von Eisbohrkernen [EPA], dazugefügt zwei neuere Messwerte des Mauna Loa Observatory [https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html]

Fakten zur PV.docx 26.03.20 48 (99)

16.2 Liefert PV relevante Beiträge zur Senkung des CO₂-Ausstoßes?

Ja.

Während PV-Anlagen im Betrieb kein CO₂ freisetzen, muss eine gesamtheitliche Betrachtung auch die Herstellung der Anlage und ihre Entsorgung berücksichtigen. Betrachtet man den Lebenszyklus einer in Deutschland betriebenen Photovoltaik-Dachanlage, so liegen plausible Schätzungen zwischen ca. 50 (Abbildung 39, [EnAg]) und 67 g CO₂-Äq./kWh Solarstrom [UBA7]. Mit der Verbreitung neuer Technologien wie dem Diamantdrahtsägen sind die Treibhausgasemissionen bei der PV-Produktion in der jüngsten Vergangenheit deutlich gesunken.

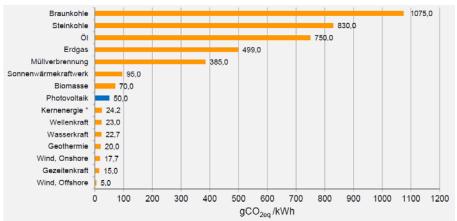


Abbildung 39: Durchschnittliche CO₂-Äquivalent Emissionen verschiedener Stromerzeugungstechnologien [EnAg]

Durch den Ausbau der EE konnte der CO₂-Emissionsfaktor für den deutschen Strommix von 764 g CO₂/kWh im Jahr 1990 auf 474 g CO₂/kWh im Jahr 2018 gesenkt werden (Abbildung 40). Der Emissionsfaktor bezeichnet das Verhältnis der direkten CO₂-Emissionen der gesamten deutschen Stromerzeugung (inkl. Stromexport) zum Nettostromverbrauch in Deutschland [UBA6].

Fakten zur PV.docx 26.03.20 49 (99)

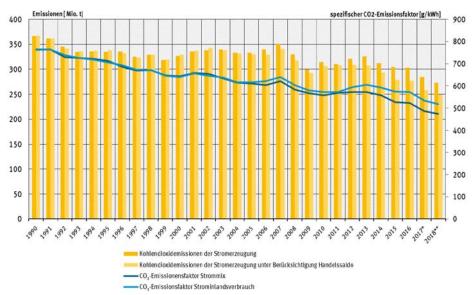


Abbildung 40: Spezifische und absolute CO₂-Emissionen der Stromerzeugung in Deutschland [UBA6]

Im Jahr 2018 wurden durch die Nutzung der PV in Deutschland netto ca. 28,4 Mio. Tonnen Treibhausgasemissionen vermieden (Abbildung 41), d.h. 621 g/kWh bei einer Stromproduktion von 45,75 TWh.

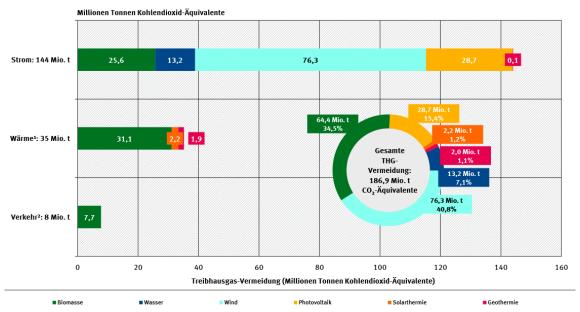


Abbildung 41: Vermiedene Treibhausgasemissionen durch die Nutzung erneuerbarer Energien im Jahr 2018 [UBA1]

Die deutsche Energiepolitik hat zudem eine hohe internationale Relevanz. Mit einer Fördermenge von 171 Mt im Jahr 2016 war Deutschland beim Abbau von Braunkohle international die Nummer 1, noch vor China. Zwar entfallen weniger als 3% des weltweiten Stromverbrauchs auf Deutschland, bei weiter sinkender Tendenz. Die deutsche Poli-

Fakten zur PV.docx 26.03.20 50 (99)

tik hat jedoch eine Vorreiterrolle bei der Entwicklung von Instrumenten zur Förderung von EE gespielt, allen voran dem EEG. Das EEG-Instrumentarium wurde international stark beachtet und diente Dutzenden von Länder als Vorlage für ähnliche Regelungen. China ist mittlerweile zum Vorreiter in Sachen PV-Ausbau geworden und hat Deutschland bei der jährlich installierten Leistung um ein Vielfaches überholt. Die Internationale Energieagentur (IEA) lobte in ihrem Länderbericht "Deutschland 2013" das EEG als ein sehr effektives Ausbauinstrument, das die Kosten für die Gewinnung regenerativer Energien in den letzten Jahren erheblich gesenkt habe [IEA3]. Auch die Abkehr der Deutschen von der Atomenergie hat international aufhorchen lassen. Fünf weitere europäische Länder haben den Ausstieg beschlossen (Belgien, Schweiz, Spanien) oder sind bereits aus der Kernkraft ausgestiegen (Italien, Litauen).

Die höchste Durchschlagskraft bezüglich CO₂-Vermeidung erzielt das EEG jedoch über eine "Nebenwirkung": durch Schaffung des international größten und sichersten Absatzmarktes für PV über mehrere Jahre hat es die globale Skalierung, Technologieentwicklung und Preissenkung wesentlich beschleunigt (Abbildung 42). PV senkt weltweit den Verbrauch fossiler Rohstoffe für die Stromerzeugung.

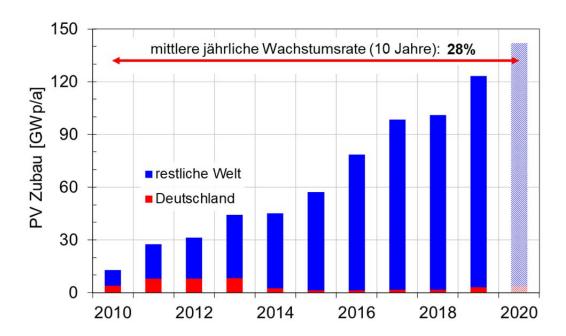


Abbildung 42: Entwicklung des jährlichen PV-Zubaus für Deutschland und die restliche Welt, Zahlen von EPIA, IHS, Solar Power Europe, mit Prognose für 2020.

Das deutsche EEG hat damit PV-Strom für viele Menschen in Entwicklungsländern schneller erschwinglich gemacht. Aus dieser Perspektive ist das EEG nebenbei "das vermutlich erfolgreichste Entwicklungshilfeprogramm aller Zeiten in diesem Bereich" (Bodo Hombach im Handelsblatt 11.1.2013), das auch in den Entwicklungsländern erhebliche Mengen an CO₂ einspart.

Fakten zur PV.docx 26.03.20 51 (99)

16.3 Entstehen bei der Produktion von PV neben CO₂ weitere klimaschädliche Gase?

Ja, bei manchen Dünnschicht-Technologien.

Bei der Produktion von Dünnschicht-PV und Flachbildschirmen wird teilweise noch Stickstofftrifluorid (NF₃) zur Reinigung von Beschichtungsanlagen eingesetzt. Restmengen dieses Gases können dabei in die Atmosphäre entweichen. NF₃ ist über 17.000 mal klimaschädlicher als Kohlendioxid. Aktuelle Emissionsmengen sind nicht bekannt, der NF₃-Ausstoß wird jedoch ab 2013 in 37 Staaten gemäß des ergänzten Kyoto-Protokolls ermittelt.

16.4 Heizen dunkle PV-Module durch ihre Absorption die Erde auf?

Die Solarstrahlungsbilanz liefert einen wichtigen Beitrag zum Wärmehaushalt der Erde. Helle Oberflächen reflektieren einen größeren Teil der auftreffenden Solarstrahlung zurück in den Weltraum, während dunkle Oberflächen stärker absorbieren und damit die Erde aufheizen.

Die Installation von PV-Modulen verändert den Reflexionsgrad (die Albedo) der durch sie bedeckten Erdoberfläche. Wenn PV-Module mit einem Wirkungsgrad um 18% Sonnenenergie in elektrische Energie umwandeln und zusätzlich einen kleinen Teil der Einstrahlung über Reflexion zurückwerfen, erzeugen sie (lokal) so viel Wärme wie eine Oberfläche mit ca. 20% Albedo. Asphalt weist zum Vergleich eine Albedo um 15% auf, Wiese unter 20%, Wüste um 30% (http://wiki.bildungsserver.de/klimawandel/index.php/Albedo). Zusammen mit dem relativ geringen Flächenanteil, den PV-Module benötigen, ist der Albedo-Effekt marginal. Hinzu kommt, dass PV-Strom, der Strom aus Verbrennungskraftwerken ersetzt, die Freisetzung von CO₂ reduziert und damit den Treibhauseffekt wirksam bremst.

17. Ersetzen PV-Anlagen fossile und nukleare Kraftwerke?

Nein, zumindest nicht in den nächsten Jahren.

Solange keine nennenswerten Strom-zu-Strom Speicherkapazitäten oder Speicherwasserkraftwerke im Netz zugänglich sind, reduzieren PV- und Windstrom zwar den Verbrauch an fossilen Brennstoffen, die Energieimporte und den CO₂-Ausstoß, sie ersetzen aber keine Leistungskapazitäten. Die Nagelprobe sind windstille, trübe Wintertage, an denen der Stromverbrauch Maximalwerte erreicht, ohne dass Sonne- oder Windstrom bereitstehen.

Auf der anderen Seite kollidieren PV- und Windstrom zunehmend mit trägen konventionellen Kraftwerken (Kernkraft, alte Braunkohle). Diese – fast ausschließlich grundlastfähigen - Kraftwerke müssen deshalb möglichst schnell durch flexible Kraftwerke ersetzt werden, bevorzugt in multifunktionaler, stromgeführter KWK-Technologie mit thermischem Speicher (Abschnitt 18.3.6).

Fakten zur PV.docx 26.03.20 52 (99)

18. Können wir einen wesentlichen Teil unseres Energiebedarfs durch PV-Strom decken?

Ja, in dem Maße, wie wir unser Energiesystem und die energiewirtschaftlichen Strukturen an die Anforderungen der Energiewende anpassen.

18.1 Ausgangspunkt: Energiebedarf und Energieangebot

Die traditionelle Energiewirtschaft fördert fossile und nukleare Energieträger (Primärenergie), wandelt sie und bereitet sie für die Endverbraucher auf (Abbildung 43). In der Wandlung und im Verbrauch herrschen dramatische Effizienzdefizite. So wird bspw. die im Verkehr verbrauchte Endenergie über Verbrennungsmotoren überwiegend in Abwärme umgesetzt, nur ein kleiner Teil wird als mechanische Energie auf den Antriebsstrang übertragen (lastabhängig ca. 10-35%). Von der gewonnenen Antriebsenergie wird insbesondere im Stadtverkehr noch ein beträchtlicher Teil beim Bremsen irreversibel verheizt, weil Verbrennungsmotoren nicht rekuperieren. Somit verbrennt der motorisierte Straßenverkehr fossile Treibstoffe mit einem äußerst geringen Wirkungsgrad, bezogen auf die Transportleistung. Die Privathaushalte, die ca. 75% der verbrauchten Endenergie für Heizung einsetzen, könnten ihren Verbrauch durch einfache Wärmeschutzmaßnahmen halbieren. Aus diesen Beispielen wird deutlich, dass der zukünftige Energiebedarf keinesfalls mit dem heutigen Bedarf gleichzusetzen ist, weder nach Mengen, noch nach Energieträgern.

Deutschland ist hochgradig abhängig von Energieimporten (Abbildung 44), verbunden mit dem Risiko politischer Einflussnahme durch Förder- und Transitländer und dem Risiko von Störungen der Rohstofflogistik, bspw. durch Niedrigwasser in den Flüssen.

Fakten zur PV.docx 26.03.20 53 (99)

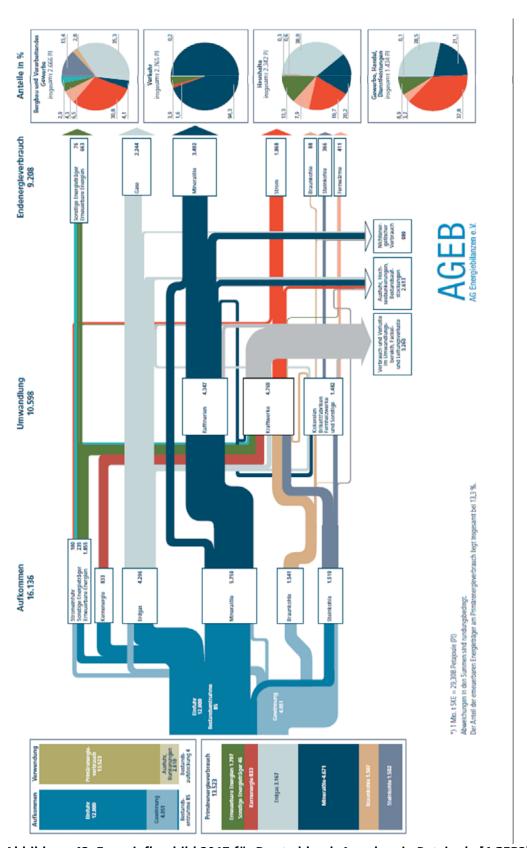


Abbildung 43: Energieflussbild 2017 für Deutschland, Angaben in Petajoule [AGEB2]

Fakten zur PV.docx 26.03.20 54 (99)

Energieträger	Netto-Importquote 2016 (bezogen auf den Primärenergieverbrauch)
Braunkohle	-1,9 %
Steinkohle	94,1 %
Uran	100,0 %
Mineralöl	100,0 %
Erdgas ²	91,2 %

Abbildung 44: Importquoten für fossile und nukleare Primärenergieträger (www.umweltbundesamt.de)

Die Kosten der Energieimporte zeigt Abbildung 45, sie liegen abzüglich der Importerlöse jährlich in der Größenordnung von 50-100 Mrd. Euro. Ein großer Teil des Geldes fließt an autokratische Regimes.

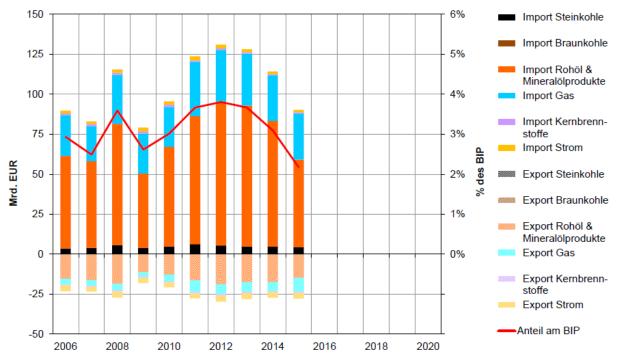


Abbildung 45: Entwicklung der Kosten für die Bereitstellung der Primärenergie in Deutschland [ÖKO3]

Die meiste Endenergie (39%) dient der Gewinnung mechanischer Energie ("Kraft") für den Verkehr und in stationären Motoren (Abbildung 46). Für Raumwärme und Warmwasser werden jährlich ca. 800 TWh Endenergie aufgewendet [BMWi1].

Fakten zur PV.docx 26.03.20 55 (99)

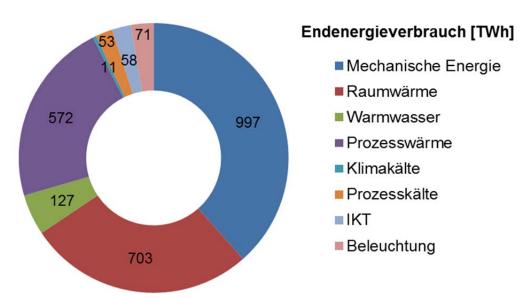


Abbildung 46: Struktur des Endenergieverbrauchs nach Anwendungsbereichen für Deutschland im Jahr 2017, Zahlen aus [BMWi1]

Die Stromlast schwankt periodisch: tagsüber wird mehr Strom benötigt als nachts, und werktags mehr als am Wochenende und an Feiertagen. Stromversorger unterscheiden im Lastprofil zwischen Grund-, Mittel- und Spitzenlast, vgl. Abschnitt 24.7. Die Grundlast ist der Lastanteil um 30-40 GW, der sich über 24 h kaum ändert. Die Mittellast schwankt langsam und überwiegend periodisch, die Spitzenlast umfasst den schnell veränderlichen Lastanteil oberhalb der Grund- und Mittellast. Der Stromverbrauch liegt im Sommer geringfügig tiefer als im Winter.

Der gesamte Strombedarf und der Energiebedarf für die Warmwasserbereitung sinken im Sommer nur leicht. Der Mineralölabsatz (Otto- und Dieselkraftstoff) zeigt sehr geringe saisonale Schwankungen [MWV]. Der Heizwärmebedarf korreliert negativ mit der Globalstrahlung, bei höchster Koinzidenz im Frühjahr.

Fakten zur PV.docx 26.03.20 56 (99)

18.2 Energieszenarien

Unser heutiges, auf fossiler und nuklearer Erzeugung basierendes Energiesystem in Deutschland ist ein Auslaufmodell. Es gibt eine Fülle von Energieszenarien für die kommenden Jahrzehnte, und sie rechnen zunehmend mit EE [UBA, ACA, ISE12]. Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben in Simulationen auf Basis von Stundenzeitreihen mit Berücksichtigung der Sektorkopplung verschiedene Transformationswege zu einem erneuerbaren Energiesystem für Deutschland untersucht (Abbildung 47). Ziel war die Reduktion der energiebedingten CO₂-Emissionen um 95-100% zum Bezugsjahr 1990. In einem wirtschaftlich optimierten Erzeugungsmix trägt die PV je nach Randbedingungen mit einer installierten Leistung von 300-645 GW bei [ISE12].

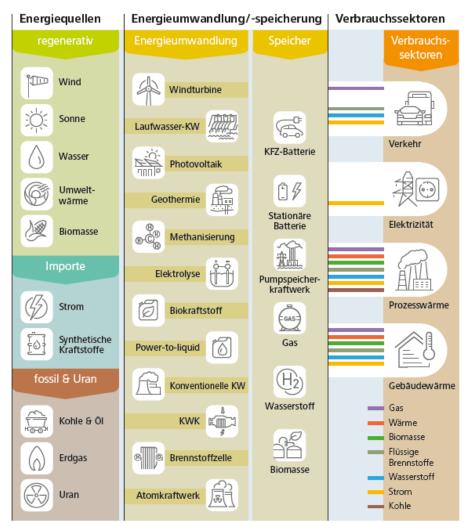


Abbildung 47: Schematische Darstellung des Modells REMod (KW: Kraftwerk, KWK: Kraft-Wärme-Kopplung, [ISE12])

Fakten zur PV.docx 26.03.20 57 (99)

Abbildung 48 zeigt eine schematische Residuallastkurve für Deutschland mit einer 100%ig erneuerbaren Stromversorgung. Dargestellt sind die absteigend geordneten Stundenwerte der Residuallast für ein Jahr. Die Residuallast entspricht der Differenz aus der Stromlast und der Stromproduktion aus volatilen erneuerbaren Quellen (PV, Wind, Laufwasser). Volatile Stromproduktion lässt sich zwar technisch jederzeit abregeln, jedoch zum Preis eines wirtschaftlichen Totalverlusts der entsprechenden Strommenge. Ein Strompreis mit sinnvoller Steuerfunktion würde entlang der Residuallastkurve der Abbildung 48 von links nach rechts fallen.

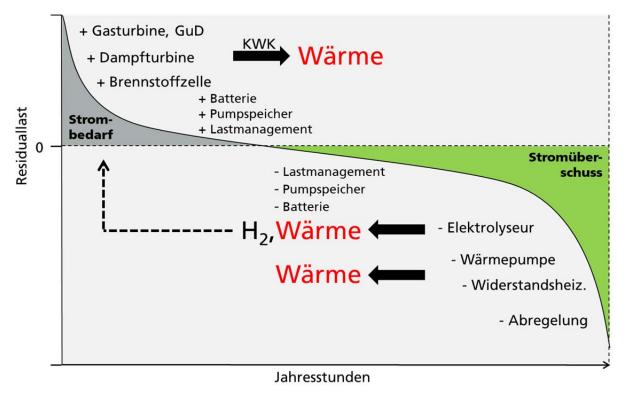


Abbildung 48: Schematische Darstellung einer Residuallastkurve für Deutschland bei Stromversorgung mit 100% EE, mit Erzeugern (+) und Lasten (-)

Auf der **Bedarfsseite** werden flexible Lasten reduziert, Batterien und Pumpspeicher entladen, Brennstoffzellen, Dampfturbinen, Gas-und-Dampf-Generatoren (GuD) und Gasturbinen in der Reihenfolge ihrer Grenzkosten aktiviert, um die Residuallast zu decken. Als Energieträger dienen Wasserstoff oder Methan, hergestellt mit EE. Bei lokaler Wärmenachfrage sind Stromgeneratoren mit Kraft-Wärme-Kopplung (KWK) ausgeführt und produzieren nutzbare Abwärme. KWK-Gasturbinen liefern Hochtemperatur-Wärme für Industrieprozesse.

Auf der **Überschussseite** werden flexible Lasten erhöht, Batterien und Pumpspeicher beladen, Elektrolyseure, Wärmepumpen und Widerstandsheizungen ("Heizstäben") bei zunehmend sinkenden Strompreisen aktiviert, um den momentan nicht benötigten Strom abzunehmen. Auch Elektrolyseure können als KWK-Anlagen betrieben werden und nutzbare Abwärme produzieren. Widerstandsheizungen und Hochtemperatur-

Fakten zur PV.docx 26.03.20 58 (99)

Wärmepumpen können Wärme für Industrieprozesse liefern. Ultima Ratio ist das Abregeln der Stromproduktion, wenn die installierte Abnahmeleistung oder die Netzkapazitäten an wenigen Stunden des Jahres nicht ausreichen.

Damit wärmeerzeugende Wandler auf beiden Seiten der Kurve stromgeführt betrieben werden können, benötigen sie ortsnah thermische Speicher und Wärmeverbraucher bzw. Anschluss an Wärmenetze (Abschnitt 18.3.6). Für die beidseitigen Ausläufer der Residuallastkurve werden Generatoren (bspw. einfache Gasturbinen) und Abnehmer (bspw. Widerstandsheizungen) mit besonders geringen leistungsbezogenen Investitionsund Vorhaltekosten (€/W) benötigt. Da selten in Betrieb, müssen sie keine hohe Effizienz aufweisen.

Der elektrolytisch erzeugte Wasserstoff kann direkt oder nach Methanisierung in Drucktanks oder im Gasnetz gespeichert werden. Von dort erfolgt eine Rückverstromung (Gasturbine, GuD, Brennstoffzelle), eine Weiterverarbeitung zu synthetischen Kraftstoffen oder eine stoffliche Nutzung in der chemischen Industrie.

Die **Speicherkapazität** des Systems muss für den Worst Case eines mehrwöchigen Primärenergieausfalls (Sonne und Wind) ausgelegt werden, bspw. eine längere Flaute im Winter bei geschlossener Schneedecke. Dazu müssen entsprechende Mengen an Wasserstoff und daraus abgeleitete synthetische Energieträger und Rohstoffe vorgehalten werden. Gäbe es für die PV keine Unterstützung durch Windkraft, dann wäre ein Vielfaches an Speicherkapazität notwendig, um weite Teile des Winterhalbjahrs abzudecken. Wegen ihrer begrenzten Kapazität fallen Batterien und Pumpspeicher im Dauerbetrieb

als Erzeuger relativ schnell aus (Minuten bis wenige Stunden). Ihren Nutzen entfalten sie im häufigen Betriebswechsel zwischen Laden und Entladen, den sie schneller und vor allem energieeffizienter umsetzen, verglichen mit dem Strom-zu-Strom-Pfad über Wasserstoff. Auch viele Optionen für das Lastmanagement entfalten nur eine kurze Wirkung. Fahrzeugbatterien müssen primär den Mobilitätsbedarf decken. Sie lassen sich deshalb nur eingeschränkt angebotsabhängig laden (Lastmanagement) bzw. als Batterie im Netz bidirektional betreiben (Speicher). Viele Millionen netzgekoppelte E-Fahrzeuge können trotzdem das Stromnetz über einige Stunden bidirektional unterstützen.

Die **Stromerzeugungsleistung** des Systems auf der linken Seite der Abbildung 48 muss ausreichen, um die komplette Versorgung in einer Größenordnung von 100-150 GW zu übernehmen, wenn die Stundenreserven (Lastmanagement, Pumpspeicher, Batterie) erschöpft sind. Diese Situation tritt häufig auf, bspw. in windarmen Nächten, und kann in Einzelfällen über mehrere Wochen anhalten (s. o.).

Die **Stromabnahmeleistung** des Systems auf der rechten Seite der Abbildung 48 in einer Größenordnung von mehreren 100 GW muss ausreichen, um die Stromproduktion aus volatilen EE abzüglich des momentanen Stromverbrauchs weitestgehend aufzunehmen, sobald die Stundenreserven (Lastmanagement, Pumpspeicher, Batterie) ausgeschöpft sind. Dafür ist u.a. eine Elektrolyseleistung im Bereich 50 – 120 GW notwendig [ISE12]. Reicht die Stromabnahmeleistung bei seltenen Produktionsspitzen nicht, so muss abgeregelt werden. Dies kann bspw. in stürmischen Nächten oder an sonnigen und gleichzeitig sehr windigen Wochenendtagen vorkommen, wenn geringer Bedarf und sehr hohe Stromproduktion zusammentreffen. Für diese wenigen Betriebsstunden lohnt kein weiterer Ausbau der Abnahmeleistung.

Fakten zur PV.docx 26.03.20 59 (99)

Wandler, die einen reversiblen Betrieb zulassen, arbeiten auf beiden Seiten der Kurve in Abbildung 47 und erreichen damit eine höhere Auslastung. Dazu zählen neben Batterien und Pumpspeichern auch reversible Brennstoffzellen, die bei Stromüberschuss Elektrolyse betreiben und sich derzeit in der Entwicklung befinden.

Die in Abbildung 48 genannten Technologien und Maßnahmen sind bis auf Turbinen und Pumpspeicher skalierbar. Sie können nicht nur zentral im Multi-MW-Maßstab betrieben werden, sondern auch im einstelligen kW-Maßstab. Entsprechende Geräte sind als Haustechnik kommerziell verfügbar.

Ein kurzer Seitenblick auf globale Energieszenarien: die Studie "Shell Scenarios Sky - Meeting the goals of the Paris agreement" der Shell International B.V. vom März 2018 sieht die PV global zur wichtigsten Stromquelle heranwachsen (Abbildung 49). Der globale Stromverbrauch steigt dabei von heute 22 PWh auf 100 PWh im Jahr 2100.

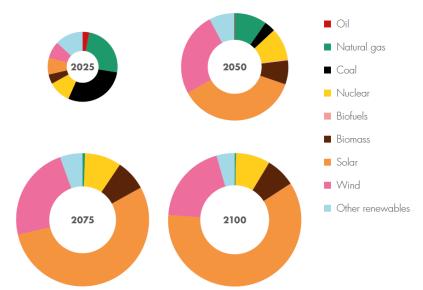


Abbildung 49: Entwicklung der globalen Stromerzeugung nach Technologien im Sky-Szenario; der Durchmesser der Tortendiagramme entspricht dem globalen Strombedarf [Shell]

Die International Energy Agency (IEA) publiziert seit Jahren Szenarien zum weltweiten Ausbau der PV (Abbildung 50) und unterschätzt dabei die tatsächliche Entwicklung (schwarze Kurve) zuverlässig. Sie erwartet, dass die weltweit installierte PV Leistung im Jahr 2020 die Windkraft, 2027 die Wasserkraft, 2032 die Kohlekraft, 2035 die Gaskraft überholen und bis zum Jahr 2040 eine Größenordnung von über 3 TW erreichen wird [IEA5].

Fakten zur PV.docx 26.03.20 60 (99)

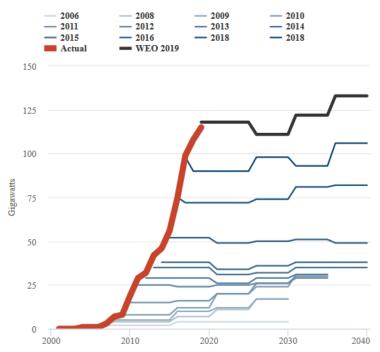


Abbildung 50: IEA-Prognosen seit 2006 und tatsächliche Entwicklung des globalen jährlichen PV-Zubaus [Carb]

18.3 Transformationsschritte

Für eine massive, technologisch und ökonomisch beherrschbare Integration von volatilem PV-Strom in unser Energiesystem gibt es keine singuläre Patentlösung, dafür aber eine Vielzahl von sich ergänzenden Maßnahmen. In den folgenden Abschnitten werden die wichtigsten Schritte angesprochen.

18.3.1 Verstetigung der PV-Stromerzeugung

Wie kann das PV-Stromangebot im Netz verstetigt werden?

Eine Verstetigung im Tageslauf steigert die Volllaststunden eines PV-Kraftwerks und reduziert den Ausgleichsbedarf bspw. durch Lastmanagement und Batterien. Zu den einfachsten Maßnahmen zählt die Installation von PV-Modulen mit Ost/West-Ausrichtung, sei es auf Dächern oder auf Freiflächen (Abbildung 51). Diese Montagevariante reduziert den Flächenverbrauch, allerdings sinkt der spezifische Jahresertrag pro installierter Modulleistung, verglichen mit der Südausrichtung. 1- oder 2-achsig nachgeführte Anlagen verstetigen nicht nur die Stromproduktion über den Tageslauf (Abbildung 51), sie heben auch den spezifischen Jahresertrag um ca. 15-30% an. Im Vergleich zur stationären Montage können sie auch Verluste mindern, die durch Schneeabdeckung oder durch erhöhte Betriebstemperaturen entstehen. Eine weitere Option bieten senkrecht montier-

Fakten zur PV.docx 26.03.20 61 (99)

te, bifaziale Module mit Nord-Süd-Verlauf, die vormittags und nachmittags mehr Strom liefern als am Mittag.

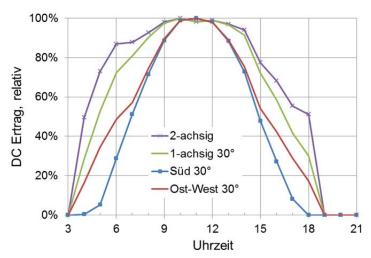


Abbildung 51: Stromertragsprofile von PV-Anlagen in verschiedenen Montagevarianten, berechnet mit der Software PVsol für einen überwiegend klaren Julitag am Standort Freiburg

Die sehr ausgeprägte saisonale Fluktuation der PV-Stromerzeugung lässt sich geringfügig dämpfen, indem südorientierte Module mit höheren Neigungswinkeln montiert werden (Abbildung 52). Dadurch steigt der Stromertrag im Winterhalbjahr geringfügig an, allerdings auf Kosten größerer Einbußen im Sommer und beim Gesamtertrag (im Rechenbeispiel -6%).

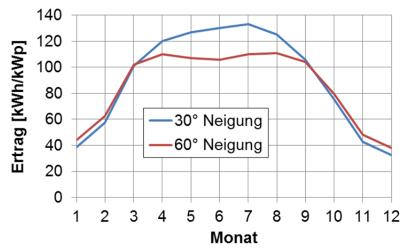


Abbildung 52: Rechenbeispiel für den spezifischen Monatsertrag einer PV-Anlage am Standort Freiburg für südorientierte Module mit 30° Neigung (max. Jahresertrag) und 60° Neigung

Die etwas höheren Stromgestehungskosten bei den genannten alternativen Montagevarianten können sich im Kontext eines erhöhten Eigenverbrauchs und der damit verbundenen Einsparungen beim Strombezug gerade für gewerbliche Kunden amortisieren. Einspeisevergütungen, die einen höheren Wert von Strom in den Morgen- und Abend-

Fakten zur PV.docx 26.03.20 62 (99)

stunden honorieren, fördern den Bau systemisch vorteilhafter PV-Kraftwerke, die nicht nur auf maximalen Jahresstromertrag optimiert sind. Auch die in Abschnitt 15.3 genannten Maßnahmen zur Erhöhung der Volllaststundenzahl tragen zur Verstetigung der PV-Stromerzeugung bei.

18.3.2 Komplementärbetrieb von Kraftwerken

Es ist technisch möglich, viele fossile Kraftwerke so zu betreiben, auszulegen oder nachzurüsten, dass sie der Residuallast teilweise folgen können (Abbildung 53). Der Teillastbetrieb an sich, der erhöhte Verschleiß und die ggf. erforderliche Nachrüstung erhöhen die Produktionskosten für Strom.

Speziell Gaskraftwerke eignen sich sehr gut zur Deckung fluktuierender Last. In Kombination mit Kraft-Wärme-Kopplung (KWK) erzielen Gaskraftwerke sehr hohe Gesamtwirkungsgrade bis 95% [UBA2]. Einfache Gaskraftwerke auf Basis von Gasmotoren liegen mit ihren Investitionskosten (€/kW) bei einem Bruchteil der Kosten für Gas-und-Dampfturbinen-Kraftwerke (GuD). Weil aber der PV-Strom die Residuallast und die mittäglichen Preisspitzen an der Strombörse bereits spürbar reduziert, und die vorteilhafte CO₂-Bilanz von Gaskraftwerken wegen geringer Emissionskosten kaum zum Tragen kommt, sind Gaskraftwerke zurzeit keine lohnende Investition.

Gaskraftwerke verbrennen heute Erdgas und Biogas. Erdgas muss überwiegend importiert werden (ca. 95% im Jahr 2017 [AGEB6]), insbesondere liefern Russland und Norwegen nach Deutschland. Im Zug der Energiewende werden Gaskraftwerke von Erdgas auf Mischgase mit steigenden Anteilen elektrolytisch erzeugten Wasserstoffs umsteigen.

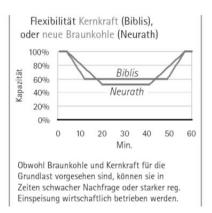


Abbildung 53: Verfügbarkeit von Kraftwerken [VGB]

Biomasse-Kraftwerke können je nach Typ feste Biomasse (Restholz, Altholz), flüssige Biomasse (Pflanzenöl) oder Biogas (aus der Landwirtschaft oder aus Kläranlagen) verbrennen. Ende 2019 waren deutschlandweit Biomasse-Kraftwerke mit über 8 GW_p Leistung installiert [ISE4]. Kraftwerke, die feste oder flüssige Biomasse verbrennen, lassen sich aufgrund der einfachen Lagerung des Brennmaterials sehr einfach stromgeführt betreiben. Einschränkungen gibt es bei Biogas-Kraftwerken, wenn der Vergärungs-

Fakten zur PV.docx 26.03.20 63 (99)

durchsatz nur bedingt gesteuert und das Gas nicht im Gasnetz gespeichert werden kann. Wirtschaftlich ist ein komplementärer Teillastbetrieb dann darstellbar, wenn die Einspeisevergütung zu Zeiten eines erhöhten Strombedarfs ansteigt.

18.3.3 Erhöhung der Energieeffizienz

Maßnahmen zur Verbesserung der Energieeffizienz in Haushalten und in der Industrie gehören zu den kostengünstigsten Möglichkeiten, die Residuallast zu senken. Die Stiftung Warentest hat bspw. ermittelt, dass ein komplett mit Altgeräten ausgestatteter Haushalt doppelt so viel Strom verbraucht wie einer, der nur effiziente Geräte setzt [Test]. Besonders effektiv sind Maßnahmen, die den nächtlichen Stromverbrauch senken, wenn Solarstrom (und bei nächtlicher Flaute auch Windstrom) nur über vergleichsweise aufwändige Speicherung bereitgestellt werden kann.

18.3.4 Lastmanagement

Lastmanagement ("Demand Side Management") ermöglicht eine angebotsorientierte, zeitliche Verschiebung des Stromverbrauchs. Abhängig von der Anwendung und der Speicherkapazität sind Verschiebungen um Stunden bis Tage möglich. Flexibilitätsoptionen bieten

- elektrische Wärme- und Kälteerzeuger mit thermischen Speichern
- Elektrofahrzeuge mit ihren Batterien
- Haushaltsgeräte mit variablem Betriebsstart
- stromintensive Industrieprozesse

Mehrere Untersuchungen haben Lastmanagementpotenziale in der Größenordnung von 20 GW und mehr für private Haushalte und bis 14 GW für gewerbliche Verbraucher identifiziert [AEE1].

Die technischen Voraussetzungen und ökonomischen Anreize für die Erschließung dieser Potenziale müssen größtenteils noch geschaffen werden. Von entscheidender Bedeutung sind differenzierte Stromtarife und "intelligente" Stromzähler ("smart meter"), die eine zeitabhängige Abrechnung ermöglichen. Variable Tarife bilden im besten Fall die momentane Residuallast ab. Näherungsweise kann ein "Sonnenscheintarif" nützliche Anreize setzen, d.h. eine feste Absenkung in der Tageskernzeit, wenn die Solarstromproduktion in der Regel ihre Höchstwerte erreicht. Der Eigenverbrauch von Solarstromhat eine analoge Wirkung, weil er den Strompreis bei direktem Bezug vom eigenen Dach deutlich reduziert.

Fakten zur PV.docx 26.03.20 64 (99)

18.3.4.1 Elektrische Wärme- und Kälteerzeugung

Elektrische Wärmepumpen verbrauchen elektrische Energie, um Nutzwärme aus Umgebungswärme bereitzustellen (Heizen) bzw. um Wärme in die Umgebung abzuführen (Kühlen). Die Effizienz einer Wärmepumpe wird im Gebäudesektor als Jahresarbeitszahl (JAZ) angegeben und liegt im Heizbetrieb abhängig von Technologie und Last um 300%.

Widerstandsheizungen (Heizstäbe) wandeln Strom mit 100% Wirkungsgrad in Wärme um. Im Fall von Hochtemperatur-Wärme erfolgt die Umwandlung mit einem hohen exergetischen Wirkungsgrad, bei Niedertemperatur-Wärme ist dies nicht der Fall. Auch die Erzeugung von Niedertemperaturwärme durch Verbrennung ist exergetisch ineffizient.

Thermische Speicherkapazität, vor allem für Niedertemperatur-Wärme, kann viel günstiger bereitgestellt werden als Strom-zu-Strom-Speicherkapazität über Batterien oder Wasserstoff. Bei ausreichender Dimensionierung der thermischen Speicherkapazität und der Wärmepumpenleistung kann die Wärme- und Kälteerzeugung deshalb einen wesentlichen Beitrag zum Lastmanagement erbringen. Dazu werden Wärmespeicher und Kältespeicher bspw. von Klimaanlagen, Kühlhäusern und Lebensmittelmärkten bevorzugt in der Tageskernzeit oder nach Strompreissignalen aufgeladen. Fehlen allerdings großzügig dimensionierte thermische Speicher, dann steigt die Thermosensibilität der Stromlast und es müssen größere Leistungsreserven bei Kraftwerken vorgehalten werden.

18.3.4.2 Elektromobilität

Elektrische Fahrzeugantriebe nutzen hocheffiziente Motoren (Wirkungsgrad > 90%), und können Bremsenergie zu einem großen Teil zurückgewinnen (Rekuperation). Elektrofahrzeuge verwenden Batterien als elektro-chemische Energiespeicher (Batterieelektrisches Fahrzeug, BEV), in Hybridfahrzeugen unterstützt durch einen Verbrennungsmotor mit Kraftstofftank (Plug-in-Hybrid Elektrisches Fahrzeug, PHEV) oder eine Brennstoffzelle mit Wasserstofftank (Brennstoffzellenfahrzeug).

E-Fahrzeuge können in ihrer Rolle als Verbraucher zum Lastmanagement beitragen, wenn die Beladung ihrer Batterie, soweit es die Fahrzeugnutzung zulässt, angebotsorientiert erfolgt. Um PV-Strom zu tanken, müssen sie an ihren Tagesstellplätzen E-Tanksäulen vorfinden, bspw. am Arbeitsplatz, in Parkhäusern oder an öffentlichen Parkplätzen. Entscheidend für die Mobilisierung des Potenzials ist die Verfügbarkeit von Preissignalen in Echtzeit und als Prognose. Damit werden Privatpersonen bei ihren Tankstopps günstige Ladezeiten ebenso berücksichtigen wie E-Logistikunternehmen bei ihrer Routenplanung.

Plug-In-Hybrid Elektrofahrzeuge können rein elektrisch mit einer Akkuladung bis ca. 80 km zurücklegen. Reine Elektrofahrzeuge bieten Normreichweiten (NEFZ) bis zu 380 km

Fakten zur PV.docx 26.03.20 65 (99)

mit 40 kWh Speicher und bis zu 520 km mit 60 kWh Speicher. Rechnerisch entspricht die Gesamtfahrleistung aller in Deutschland zugelassenen PKW im Jahr 2017 von 630 Mrd. km [KBA] bei einem Verbrauch von 160 W/km [AGORA2] einem Jahresstromverbrauch durch E-Fahrzeuge von 100 TWh.

Im Jahr 2020 sollten nach früheren Plänen der Bundesregierung in Deutschland eine Million Elektroautos zugelassen sein. Bei einer Ladeleistung von ca. 40 kW pro Fahrzeug im Schnelllademodus können 25000 Fahrzeuge am Stromnetz bereits ein Gigawatt an bidirektional steuerbarer Leistung für die Primär-, Sekundär- und Minutenreserve bereitstellen. Die Energiewende beginnt im Individualverkehr allerdings auf 2 Rädern: über 4 Millionen verkaufter E-Fahrräder in Deutschland standen Ende 2018 lediglich 83000 zugelassene reine Elektro-Autos (BEV) gegenüber (de.statista.com).

Abbildung 54 zeigt die kompletten Treibhausgasemissionen eines heutigen BEV mit 35 kWh Batterie über die Fahrleistung für gemischte Nutzung Stadt/Land, verglichen mit einem Benzin- und einem Dieselauto, mit 3 Varianten für den Strommix.

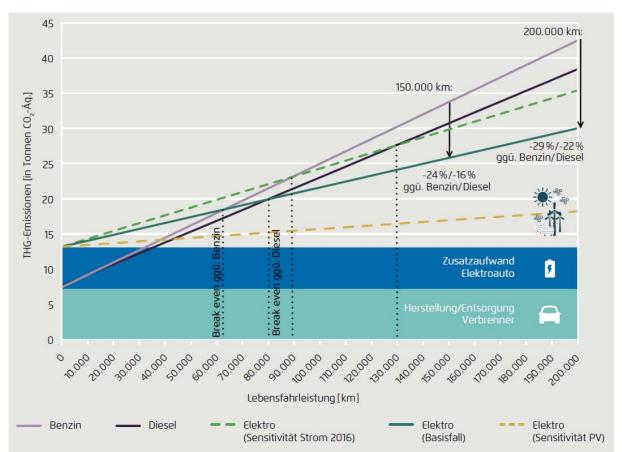


Abbildung 54: Treibhausgasemissionen von heutigen Fahrzeugen der Kompaktklasse in Abhängigkeit von der Fahrleistung [AGORA2]

Konsequentes Laden mit Solarstrom (oder Windstrom) führt zu einem besonders flachen Verlauf der BEV-Emissionslinie (gelb). Wenn das BEV zusammen mit einer kleinen PV-Anlage von 3 kW_p Nennleistung verkauft wird, fährt das Fahrzeug bilanziell mit 100%

Fakten zur PV.docx 26.03.20 66 (99)

Solarstrom, bei einer mittleren jährlichen Fahrleistung von über 15000 km, einem spezifischen Jahresertrag von 950 kWh/kW_D und 15% Ladeverlusten.

Betrachtet man reinen Stadtverkehr mit typischem Stop-and-go-Betrieb, dann sinken Verbrauch und THG-Emissionen pro km für BEV dank Rekuperation, während sie für Verbrenner wegen Bremsverlusten und ineffizientem Teillastbetrieb ansteigen. In der Stadt genügen meistens auch kleinere Batterien von bspw. 15-20 kWh Kapazität, wodurch THG-Emissionen für Herstellung und Betrieb nochmals sinken.

Neuere Untersuchungen zeigen eine zwischenzeitliche Verringerung der batteriebezogenen THG-Emissionen auf Werte von 61-106 kg CO₂-Äq/kWh Batteriekapazität [IVL], verglichen mit den 145 kg CO₂-eq/kWh aus dem Jahr 2017, die Abbildung 54 zugrunde liegen. Perspektivisch werden bei der Herstellung von BEV steigende Anteile von EE mit entsprechend sinkenden Treibhausgasemissionen verwendet.

18.3.4.3 Industrie

In der stromintensiven Industrie, bspw. der elektrolytischen Aluminiumproduktion, gibt es ebenfalls Potenziale zur Anpassung von Verbrauchsprofilen. Unternehmen, die kurzfristig angekündigte, temporäre Leistungskürzung bei der Stromlieferung akzeptieren, können bereits heute eine vertraglich vereinbarte Ausgleichszahlung erhalten. Sobald sehr preiswerter Tagesstrom häufiger zur Verfügung steht, die installierte PV-Leistung also weiter zunimmt, wird auch die Flexibilität aufseiten der Industrie zunehmen. Eine angebotsorientierte Verringerung der Auslastung stromintensiver Prozessschritte erhöht die Produktionskosten.

Mit EE gewonnener ("grüner") Wasserstoff wird zum Rohstoff der Metallurgie, bspw. für die Direktreduktion von Eisenerz, und der chemischen Industrie, über die Methanisierung und die Ammoniaksynthese. Die Produktion des benötigten grünen Wasserstoffs kann ebenfalls zum Lastmanagement beitragen.

18.3.4.4 Haushaltsgeräte

Haushaltsgeräte, deren Betrieb auch verzögert starten kann, müssen technisch in die Lage versetzt werden, bei Freigabe durch den Nutzer die Tageskernzeit oder entsprechenden Preissignale abzuwarten. Dazu gehören im Haushalt Waschmaschine, Wäschetrockner und Spülmaschine (Abbildung 55). Auch bei der elektrischen Wärmeerzeugung (Heizung, Brauchwasser) und Kälteerzeugung können in Verbindung mit thermischen Speichern hohe Flexibilitätspotenziale realisiert werden (s. Abschnitt 18.3.4.1).

Fakten zur PV.docx 26.03.20 67 (99)

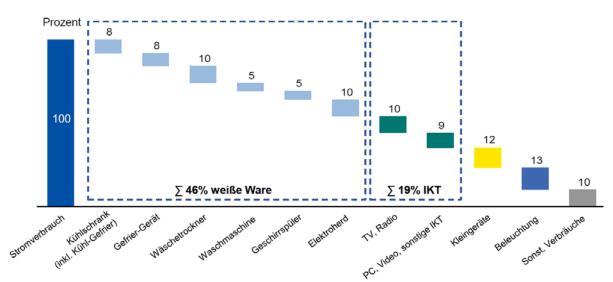


Abbildung 55: Stromverbrauch eines durchschnittlichen Haushalts ohne Warmwasseraufbereitung [RWE]

18.3.5 Ausgewogener Zubau von PV- und Windkraftkapazitäten

Witterungsbedingt zeigt sich in Deutschland eine negative Korrelation zwischen stündlichen bis hin zu monatlichen Erzeugungsmengen von PV- und Windstrom. Wenn es gelingt, die installierten Leistungen für PV und Windstrom in der gleichen Größenordnung zu halten, reduziert ihre Kombination den Ausgleichsbedarf.

Auf Stundenbasis überschreitet die Summe der tatsächlichen Stromproduktion aus PV und Wind nur sehr selten 50% der summierten Nennleistungen. Wenn man die im Jahr 2017 installierte PV- und Windkraftleistung mit ihrer stündlichen Stromproduktion auf je 200 GW_p hochskaliert, dann ergibt sich die Erzeugungskurve aus Abbildung 56.

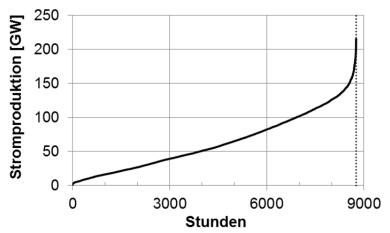


Abbildung 56: Fiktive Jahresstromproduktion (8760 Stunden) für 200 GW_p PV und 200 GW_p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017

Fakten zur PV.docx 26.03.20 68 (99)

Bei Dunkelheit und Flaute liegt die Produktion nahe 0. Die Energiemenge oberhalb 200 GW liegt unter 1 Promille, oberhalb 150 GW unter 1%. Sieht man von diesen Sturmspitzen ab und nimmt man eine Grundlast von mindestens 50 GW an, so bleibt eine Bandbreite von ca. 100 GW, für deren Integration technische Lösungen benötigt werden.

Auf Monatsbasis verläuft die Summe der Stromproduktion aus PV und Landwind über das Jahr gleichmäßiger als die Produktion der beiden Sparten für sich allein (Abbildung 27).

18.3.6 Kraft-Wärme-Kopplung

Niedertemperaturwärme für Raumheizung und Warmwasser, sowie industrielle Prozesswärme auf hohem Temperaturniveau werden heute noch überwiegend durch die Verbrennung fossiler Ressourcen und in Verbindung mit kleinen Wärmespeicherkapazitäten gewonnen. In einem erneuerbaren Energiesystem werden große Mengen an Nutzwärme bei der Transformation von elektrischer Energie erzeugt, aus der Abwärme von Wandlern.

Große Wärmespeicherkapazitäten für Niedertemperaturwärme (Abschnitt 18.3.7.1) ermöglichen den stromgeführten Betrieb der Wandler. Die Ausdehnung von Wärmeverteilnetzen wird durch entfernungsabhängige Transportverluste ungleich stärker begrenzt als im Stromsektor. Deshalb müssen Anlagen mit Strom-Wärme-Kopplung (Abbildung 48) in ihrer Leistung und Platzierung auf den lokalen Wärmeverbrauch und nutzbare Wärmenetze zugeschnitten werden. Das können Nahwärmenetzen sein mit einem Wärmetransport zwischen benachbarten Gebäuden oder Fernwärmenetze, die Stadtteile oder ganze Städte versorgen.

Hochtemperaturwärme für Industrieprozesse kann bei Strombedarf aus der Abwärme von KWK-Gasturbinen (bis ca. 550°C) gewonnen werden.

In Deutschland waren Ende 2014 ca. 33 GW an elektrischer KWK-Leistung am Netz [ÖKO2], die vor allem Erdgas, Biomasse und Kohle einsetzen. KWK-Anlagen erreichen Gesamtwirkungsgrade bis 90%, als Gas-BHKW sogar bis 95% [UBA2]. Selbst Mikro-BHKW für das Einfamilienhaus können elektrische Wirkungsgrade bis 25% und Gesamtwirkungsgrade bis 90% erreichen [Licht]. Sie nutzen Verbrennungs- oder Stirlingmotoren zur Erzeugung mechanischer Leistung. Mit fortschreitender Energiewende werden KWK-Anlagen von fossilen Brennstoffen auf Wasserstoff und Methan umgestellt, ein Teil verbrennt weiterhin Biomethan/-masse.

Fakten zur PV.docx 26.03.20 69 (99)

18.3.7 Energiespeicherung

18.3.7.1 Niedertemperatur-Wärmespeicher

Einmal in Niedertemperaturwärme umgewandelt, lässt sich Energie effizient und preiswert speichern. Niedertemperatur-Wärmespeicher, vor allem Heißwasser-Wärmespeicher, ermöglichen den stromgeführten, hocheffizienten Betrieb von KWK-Anlagen auf beiden Seiten der Residuallastkurve (Abbildung 48), sowie von Wärmepumpen und Heizstäben auf der Stromabnehmerseite. Derselbe Speicher kann bspw. bei hohen Stromüberschüssen gleichzeitig über Wärmepumpe und Heizstab, bei Strombedarf durch ein KWK beladen werden. Wärmespeicher sind skalierbar vom Einfamilienhaus über Mehrfamilienhäuser und Gewerbebetriebe bis zur Quartiersversorgung. Die relativen Speicherverluste und die spezifischen Kosten nehmen mit der Größe des Speichers ab. Große Speicher (ab mehrere Tausend m³) lassen sich als saisonale Wärmespeicher betreiben (http://www.saisonalspeicher.de). Sie ermöglichen den Übertrag von Nutzwärme aus dem Sommer- in das Winterhalbjahr mit seinem sehr viel höheren Wärmebedarf.

Wärmespeicher erhöhen den Eigenverbrauch von PV-Anlagen, wenn sie v.a. im Sommerhalbjahr über Wärmepumpe und/oder Heizstab beladen werden. Die PV-Anlage kann saisonal die Brauchwassererwärmung übernehmen, umso mehr, wenn die PV-Module mit hoher Neigung auf steilen Süddächern oder an Südfassaden montiert sind. Sobald Preissignale verfügbar werden, können dezentrale Wärmespeicher auch aus dem Stromnetz beladen werden und überschüssigen Windstrom nutzen.

18.3.7.2 Hochtemperatur-Wärmespeicher

Überschüssiger Strom lässt sich über Widerstandsheizungen sehr effizient in Hochtemperatur-Wärme (Größenordnung 650 °C) umwandeln. Hochtemperatur-Wärme kann als latente Wärme in Flüssigsalz-Speichern oder als sensible Wärme in Gesteinsschüttungen [Siem] oder Stahlkörpern [Vatt] gespeichert werden. Bei Bedarf wird die Wärme für Industrieprozesse bzw. für den Antrieb einer konventionellen Dampfturbine genutzt, ggf. mit weiterer Nutzung der Niedertemperaturwärme. Erste Pilotanlagen befinden sich in der Erprobung, der Hersteller Lumenion gibt einen Strom-zu-Strom-Wirkungsgrad von 25% an.

18.3.7.3 Batterien

Mit kleinen, stationären Akkus im Haus lässt sich der Eigenverbrauch von PV-Strom in die Abendstunden ausdehnen und damit massiv erhöhen (typischerweise verdoppeln, s. Abbildung 57). Im August 2018 wurde in Deutschland die Zahl von 100.000 PV-

Fakten zur PV.docx 26.03.20 70 (99)

Speichern überschritten. Bei netzdienlicher Systemführung ist eine Netzentlastung durch Reduktion der Einspeisespitze und des Abendbezugs möglich (Abbildung 58). Speicher würden damit einen erhöhten PV-Zubau ermöglichen [ISE7]. In Pilotvorhaben wird derzeit auch die Speicherung von elektrischer Energie in großen, stationären Batterien untersucht [RWE1]. Die gesamte installierte Batteriekapazität in Deutschland liegt noch unter 1 GWh.

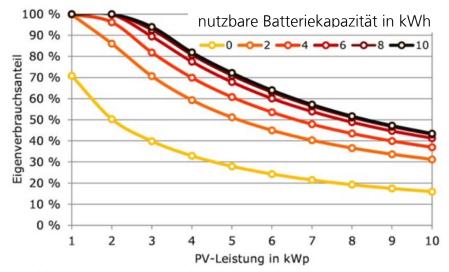


Abbildung 57: Eigenverbrauchsanteil in Abhängigkeit von Batteriekapazität und Leistung des Solargenerators für einen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 kWh. [Quasch]

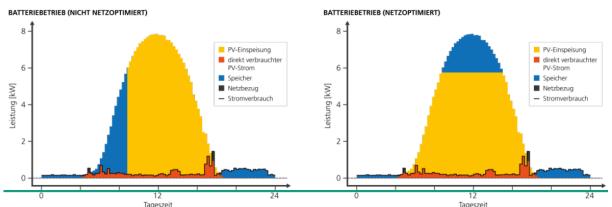


Abbildung 58: Gegenüberstellung der konventionellen und der netzdienlichen Betriebsführung [ISE7]

E-Fahrzeuge sind als teilflexible Stromverbraucher nicht nur für das Lastmanagement prädestiniert (Abschnitt 18.3.4.2), sie werden als Träger von Batteriespeichern auch bidirektional agieren [ENER]. E-Fahrzeuge, die mit dem Netz verbunden sind und die volle Reichweite nicht durchgängig als Fahrbereitschaft vorhalten müssen, können bei entsprechender technischer Ausrüstung als Strom-Strom-Speicher betrieben werden. Bei zehn Millionen E-Fahrzeugen am Netz (heute sind 46 Mio. PKW mit Verbrennunsmotor

Fakten zur PV.docx 26.03.20 71 (99)

in Deutschland angemeldet [KBA]) mit je 20 kWh disponierbarer Kapazität (bei 40 – 60 kWh Gesamtkapazität pro Fahrzeug) kommt eine Batteriekapazität von 200 GWh zusammen. Private KFZ parken im Schnitt ca. 23 h pro Tag, allein schon die begrenzte Kapazität von Verkehrswegen zwingt die meisten Autos über die meiste Zeit in den Stand. Mit dem Netz verbundene E-Fahrzeuge können über ihre Batterien auch im Stand einen wirtschaftlichen Nutzen entfalten, anders als ihre Vorgänger mit Verbrennungsmotor.

18.3.7.4 Mechanische Speicher

Die aktuell installierte Pumpspeicher-Kapazität im deutschen Stromnetz liegt bei knapp 38 GWh, die Nennleistung bei 10 GW, der durchschnittliche Wirkungsgrad um 70%, ohne elektrische Zu- und Ableitungsverluste. Zum Größenvergleich: die genannte Speicherkapazität entspricht rechnerisch dem Ertrag des deutschen PV-Kraftwerksparks aus weniger als einer Betriebsstunde unter Volllast. Laufwasserkraftwerke können mangels Staukapazitäten kaum Regelbeiträge im Komplementärbetrieb leisten. Ihr Beitrag von ca. 3,8 GW Nennleistung [ISE4] ist nur noch wenig ausbaufähig. Die mechanische Speicherung von elektrischer Energie in Druckluft-Speichern (adiabatic compressed air energy storage, CAES) befindet sich in der Erprobung.

18.3.7.5 Wasserstoff und Syntheseprodukte

Die elektrolytische Umwandlung von überschüssigem Sonnen- und Windstrom in Wasserstoff, ggf. mit anschließender Methanisierung und Weiterverarbeitung zu synthetischen Flüssigkraftstoffen, befindet sich in der Skalierung und Erprobung [AMP]. Hochtemperatur-Elektrolyseure erreichen Wirkungsgrad über 80%, zusätzliche Energie wird ggf. für Gaskompression, Verflüssigung (20-30% Verlust) und folgende Syntheseschritte benötigt. Im April 2019 waren Elektrolyseure mit einer Gesamtleistung von rund 30 MW am Netz, in Planung waren 273 MW [DVGW]. Abbildung 59 zeigt aktuelle und prognostizierte Investitionskosten für verschiedene Elektrolysetechnologien.

Fakten zur PV.docx 26.03.20 72 (99)

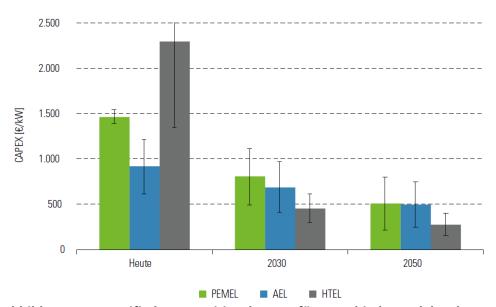


Abbildung 59: Spezifische Investitionskosten für verschiedene Elektrolyseurtechnologien (PE-MEL: Membranelektrolyse, AEL: Alkalische Elektrolyse, HTEL: Hochtemperatur-Elektrolyse, [NOW])

Die Wandlung von EE-Strom zu lagerfähigen Energieträgern ("Power-to-X") erschließt riesige, bereits vorhandene Speichermöglichkeiten. Bereits heute ist es technisch möglich, den Wasserstoffanteil im Gasnetz auf bis zu 20% zu erhöhen. Insgesamt lassen sich rund 230 TWh Arbeitsgas (entspricht 820 Petajoule) in bestehenden Untertage-Gasspeichern einlagern. Untergrund-Kavernenspeichern machen rund zwei Drittel des Volumens der deutschen Gasspeicher aus, sie können bis zu 100 Prozent Wasserstoff aufnehmen.

Synthetische Energieträger können über stationäre Brennstoffzellen (Wirkungsgrad bis ca. 65%) oder thermische Kraftwerke rückverstromt werden, als Kraftstoffe im Transportsektor Verwendung finden (bspw. Wasserstoff für Brennstoffzellen-Fahrzeuge, Dieselsubstitute für den Schiffsverkehr, Kerosinsubstitute im Flugverkehr) oder als Ausgangsstoffe für die Chemieindustrie.

Reversible Hochtemperatur-Brennstoffzellen (rSOC, englisch "reversible Solid Oxide Cell"), die auch als Elektrolyseure betrieben werden können, befinden sich in der Entwicklung und erreichen aktuell einen Strom-zu-Strom-Wirkungsgrad von 43% [FZJ]. Verglichen mit einer Kombination von reinen Elektrolyseuren mit reinen Brennstoffzellen versprechen diese bidirektionalen Wandler als stationäre Kraftwerke im Stromnetz eine höhere Volllaststundenzahl und geringere Investitionskosten pro installierter Leistung.

Fakten zur PV.docx 26.03.20 73 (99)

18.3.7.6 Übersicht

Abbildung 60 zeigt Pfade für die Speicherung und Wandlung von PV- und Windstrom. Für die praktische Relevanz dieser Pfade sind neben dem technischen Wirkungsgrad u.a. die Kosten der zu installierenden Nennleistung von Wandlern (€/W) und Kapazität von Speichern (€/Wh) zu betrachten.

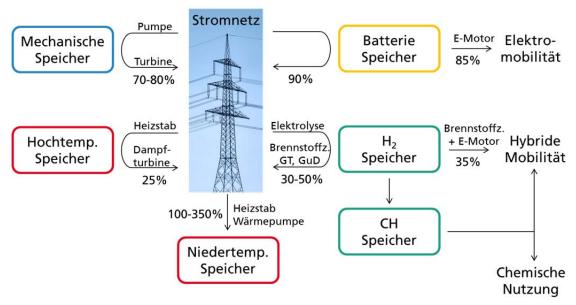


Abbildung 60: Technologien für Energiespeicher und -wandler mit heute erzielbaren Wirkungsgraden am Ende der Wandlerkette, ohne Kraft-Wärme-Kopplung (GT: Gasturbine, GuD: Gasund Dampfturbine)

18.3.8 Netzausbau

18.3.8.1 Nationaler Netzausbau

Studien von Fraunhofer IWES und ECOFYS im Auftrag des BSW hatten ergeben, dass ein Ausbau der installierten PV-Leistung auf 70 GW $_{\rm p}$ bis zum Jahr 2020 Netzausbaukosten von ca. 1,1 Mrd. Euro verursacht [IWES1], [ECOFYS]. Die entsprechenden jährlichen Kosten liegen bei ca. 10% der routinemäßigen jährlichen Ausgaben für die Netzertüchtigung. Betrachtet wurde ein Ausbau im Niederspannungsnetz mit PV-Anlagen, die Systemdienstleistungen bereitstellen (z.B. Spannungshaltung durch Blindleistungskompensation) und eine teilweise Ausrüstung von Ortsnetztrafos mit Regeleinrichtungen.

Um lokale Netzüberlastungen durch Erzeugungs- bzw. Verbrauchsspitzen zu vermeiden, werden zunehmend Batteriespeicher als wirtschaftlich interessante Alternative zum Netzausbau realisiert. Vergleichsweise hohe Netzausbaukosten entstehen für die Durch-

74 (99)

leitung von Windstrom von Nord- nach Süddeutschland und für den Anschluss der Offshore-Windkraftwerke.

18.3.8.2 Stärkung des europäischen Verbundnetzes

Das deutsche Stromnetz ist Teil des europäischen Verbundnetzes. Eine Verstärkung der grenzüberschreitenden Kuppelkapazität von derzeit ca. 20 GW ermöglicht einen besseren Ausgleich volatiler PV-Stromproduktion über den europäischen Stromhandel. Abbildung 61 zeigt die installierte Leistung an Laufwasser- und Speicherwasserkraftwerken sowie an Pumpspeicherkraftwerken. Speicherkraftwerke können komplementär zur PV-Erzeugung betrieben werden, Pumpspeicher als effiziente Strom-zu-Strom-Speicher agieren.

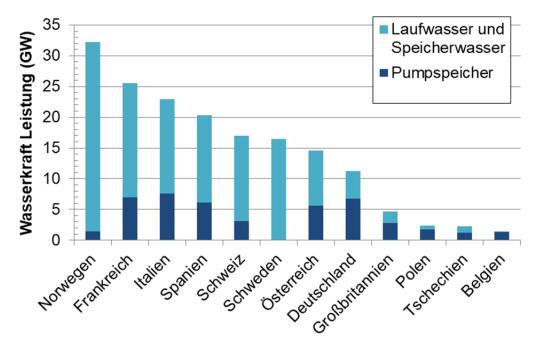


Abbildung 61: Installierte Leistung von Wasserkraftwerken in benachbarten Ländern, Zahlen aus [IHA]

18.3.9 Übersicht

Aus heutiger Sicht ist ein Energiesystem auf Basis von annähernd 100% EE technisch und wirtschaftlich darstellbar. Abbildung 62 zeigt die wichtigsten, mit dem Stromnetz verbundenen Elemente von der Gewinnung über die Wandlung und Speicherung bis zum Verbrauch. Um den Speicherbedarf zu reduzieren wird der Stromverbrauch in Haushalten und Industrie teilweise flexibilisiert. IKT steht für Informations- und Kommunikationstechnik. Die gestrichelt dargestellten Kästen deuten an, dass derzeit noch sehr

Fakten zur PV.docx 26.03.20 75 (99)

geringe Leistungen (bei den Wandlern) oder Kapazitäten (bei den Speichern) verfügbar sind.

Im Sektor "**Wärme**" (rot) beladen Blockheizkraftwerke, Wärmepumpen und – bei Angebotsspitzen auf der Stromseite – Heizstäbe die Wärmespeicher stromgeführt. Wo es die Abnahmedichte zulässt, bspw. in Quartieren, erfolgt die effiziente Speicherung zentral in großen Wärmespeichern.

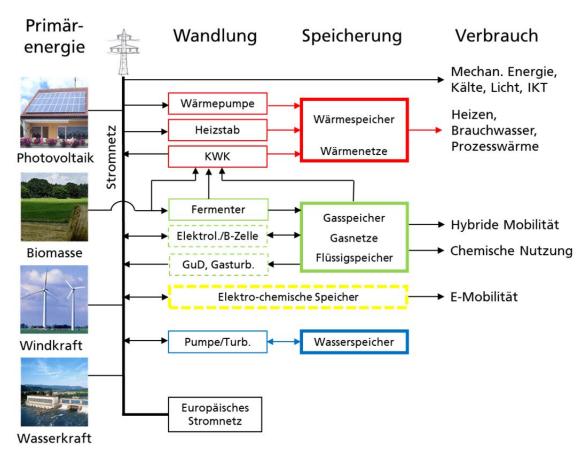


Abbildung 62: Vereinfachte schematische Darstellung eines Erneuerbaren Energiesystems mit den wichtigsten stromnetzgebundenen Bausteinen der Kategorien Gewinnung, Wandlung, Speicherung und Verbrauch

Im Sektor "Gas" (grün) produzieren Biomasse-Fermenter Methan und Elektrolyseure Wasserstoff, der auch methanisiert oder zu synthetischen Kraftstoffen weiterverarbeitet werden kann. Teilweise wird Biomasse direkt im BHKW verbrannt. Bei Strombedarf kommen kombinierte Gas- und Dampfturbinen, Brennstoffzellen und – bei Bedarfsspitzen - auch reine Gasturbinen zum Einsatz. Wasserstoff-Elektrofahrzeuge tanken ihren Treibstoff aus stationären Gasspeicher, Fahrzeuge für große Reichweiten (insbesondere Flugzeuge) tanken flüssige synthetische Kraftstoffe.

Im Sektor "**Batterie**" (schwarz) werden stationäre, zentrale oder dezentrale elektrochemische Speicher je nach Residuallast be- oder entladen. Mobile Batterien in Elektrofahrzeugen bedienen primär den Mobilitätsbedarf, können aber im Stillstand zusätzlich

76 (99)

das Netz bidirektional stützen. Bei den meisten elektrochemischen Speichern sind Wandler und Speicher baulich verschmolzen, nur sogenannte Redox-Flow-Batterien verfügen über externe, frei skalierbare Speichertanks.

Im **mechanischen Sektor** (blau) werden Wasserspeicher-Kraftwerke über Pumpen und Turbinen bidirektional betrieben, analog Druckluftspeicher-Kraftwerke über Kompressoren und Turbinen.

Zeithorizont bis 2025: Schwerpunkt "Flexibilisierung"

- 1. Die Energieeffizienz von Stromverbrauchern wird in allen Sektoren gesteigert.
- 2. Die installierte PV-Leistung wird auf 70-80 GW ausgebaut, verbrauchsnah, zur Verstetigung der Produktion auch in Ost/West-Ausrichtung oder mit Nachführung, mit netzstützenden Wechselrichterfunktionen, für eine Produktion von ca. 60-70 TWh/a Solarstrom bei Spitzenleistungen bis ca. 50-55 GW. Winderzeugungskapazitäten werden in ähnlichem Volumen ausgebaut.
- 3. Lastmanagement: Teile des Stromverbrauchs von Haushalten, Industrie, E-Mobilität werden durch Nachfragesteuerung (angebotsabhängige Tarife bzw. Signale) an die Verfügbarkeit von PV-Strom (und Windstrom) angepasst.
- 4. Thermische Speicher, Nah- und Fernwärmenetze werden ausgebaut.
- 5. PV-Anlagen und Elektro-Fahrzeuge werden mit netzdienlichen Batteriespeichern versehen.
- 6. Pumpspeicherleistung und -kapazität werden ausgebaut.
- 7. Für die Abnahme von gelegentlichen EE-Stromspitzen werden preiswerte (€/W) Heizstäbe in thermische Speicher eingebaut
- 8. Für die Abnahme von häufigen EE-Stromüberschüssen werden elektrische Wärmepumpen mit Einspeisung in thermische Speicher aufgebaut
- 9. Für die Deckung von gelegentlichen Residuallast-Spitzen werden preiswerte (€/W) Gasturbinen aufgebaut (bspw. aus Recycling von Flugzeugturbinen)
- 10. Für die Deckung von häufigen Residuallast-Lücken werden effiziente GuD/KWK Kraftwerke mit Einspeisung in thermische Speicher aufgebaut
- 11. Vorhandene Kohlekraftwerke werden nach Möglichkeit für flexiblen Betrieb optimiert, sonst stillgelegt.
- 12. Die Stromnetzverbindungen zu unseren Nachbarländern werden verstärkt.

Zeithorizont bis 2050: Schwerpunkt "Speicherung"

- 1. die installierte PV-Leistung wird schrittweise auf ca. 400 GW ausgebaut, für eine Solarstrom-Produktion von 350-400 TWh/a
- 2. die Wärmeversorgung wird vollständig auf EE umgestellt, der bauliche Wärmeschutz optimiert
- 3. der Verkehr wird vollständig auf Strom bzw. synthetische Kraftstoffe aus erneuerbaren Quellen umgestellt
- 4. die Wandlung und Speicherung von EE (insbesondere Strom-zu-Strom) über EE-Gas und Batterien wird massiv ausgebaut
- 5. der Verbrauch an fossilen Brennstoffen wird vollständig eingestellt

Fakten zur PV.docx 26.03.20 77 (99)

Um teure Fehlentwicklungen zu vermeiden und um die genannten Schritte nicht in Zeitlupe zu gehen, sind Anreize notwendig, ein stabiles EEG, Investitionsanreize für Energieeffizienzmaßnahmen, für multifunktionale Kraftwerke und Pumpspeicher, Preis- und Investitionsanreize für angebotsorientierten Stromverbrauch, Vergütungsanreize für nachfrageorientierte Stromeinspeisung und die Kürzung der impliziten Subvention für Kohlekraftwerke durch eine Verknappung der CO₂-Zertifikate oder— national umsetzbar - durch eine CO₂-Steuer.

18.4 Muss die Energiewende auf die Bundespolitik warten?

Nein, auch wenn die Bundespolitik es allen leichter machen kann.

Der Bundestag bestimmt als Gesetzgeber den Rahmen für die Energiewende. Daneben gibt es eine Reihe wichtiger Akteure, die in ihren Handlungsfeldern viel bewegen können, auch unabhängig vom regulativen Rahmen. Ein Handeln dieser Akteure sendet zudem deutliche Signale in die Politik.

So können Verbraucher beim Bezug von Strom und Wärme, bei der Wahl ihres Transportmittels und in ihrem gesamten Konsum erneuerbare Energien und Energieeffizienz nachfragen. Geldanleger sind gefordert, in die Energiewende zu investieren, sei es auf dem eigenen Dach, in Beteiligungsgesellschaften oder Fonds. Entscheider in Gewerbe- und Industriebetrieben oder in Stadtwerken können prüfen, welche Maßnahmen sich nachhaltig rechnen und gleichzeitig die Energiewende voranbringen. Schließlich können Bundesländer, Städte und Gemeinden die Energiewende durch eine Fülle von Maßnahmen fördern, von der Beratung der Akteure über die Förderung von Pilotprojekten, die Bereitstellung von Flächen bis hin zu eigenen Investitionsentscheidungen.

19. Brauchen wir eine PV-Produktion in Deutschland?

Ja, wenn wir neue Abhängigkeit in der Energieversorgung vermeiden wollen.

Mit fortschreitender Energiewende wird Deutschland das "fossile" Jahrhundert hinter sich lassen, ein Jahrhundert, in dem wir jährlich bis zu 90 Mrd. Euro für Öl- und Gasimporte ausgeben, deren Preise von Kartellen beeinflusst werden und deren Erträge zu einem großen Teil autoritäre Regimes finanzieren.

Die Energiewende bietet eine historische Chance, aus dieser ökonomischen und politischen Abhängigkeit auszusteigen: die Sonne scheint auch in Deutschland, Rohstoffe für die PV-Produktion sind verfügbar und Technologien zur solaren Stromerzeugung wurden in Deutschland maßgeblich mitentwickelt. Der deutsche PV-Sektor mit seinen Materialherstellern, dem Maschinenbau, den Komponentenherstellern, den F&E-Einrichtungen und der Lehre nimmt trotz des gebremsten nationalen Ausbaus weltweit immer noch eine Spitzenposition ein. Ein auf Erneuerbare umgestelltes Energiesystem basiert u.a. auf ca. 400 GW installierte PV-Leistung. Für den Aufbau und zunehmend für die laufende Erneuerung dieses Anlagenparks sind jährliche Installationen von 12-13 GW erforderlich, entsprechend ca. 40 Mio. PV-Module zu Kosten von mehreren Mrd.

78 (99)

Euro. Eine PV-Produktion in Deutschland bietet langfristige Versorgungssicherheit bei hohen Öko- und Qualitätsstandards.

20. Braucht es ein Erneuerbare-Energien-Gesetz (EEG)?

Ja, wobei die Energiewende als Ganzes in den Fokus rücken muss.

Die aktuellen Marktmechanismen würden ohne Flankierung durch ein EEG zu wenig Anreize für langfristige Investitionen in die Energiewende liefern.

Wesentlicher Grund ist die sektoriell lückenhafte, mit dem Börsengeschehen schwankende und in der Summe viel zu geringe Bepreisung von CO₂-Emissionen. Eine sozial kompensierte, **nationale CO₂ Abgabe**, wie sie bspw. in Schweden (seit 1991), in der Schweiz 2008 ("Lenkungsabgabe"), in Frankreich (Steuer außerhalb des EU-ETS) und in Großbritannien ("Carbon Price Floor") eingeführt wurde, kann diese Schwachstellen überbrücken.

PV-Kraftwerke jeder Größenordnung benötigen in aller Regel einen **Netzanschluss**, um Strom abzugeben, der vor Ort weder verbraucht noch wirtschaftlich sinnvoll gespeichert werden kann. Um die Akteursvielfalt der PV-Stromerzeuger zu erhalten, muss ein gesetzlicher Rahmen den Netzbetreiber zum unkomplizierten Anschluss bewegen.

Weiterhin benötigen PV-Kraftwerke eine langfristig vereinbarte **Stromabnahme** zu einem Mindestpreis. Dies gilt auch für Eigenverbraucher, die nicht ihre gesamte Stromproduktion verbrauchen oder speichern können. Die Investitionskosten von PV-Kraftwerken dominieren die Stromgestehungskosten, und Abregelung spart keine Betriebskosten. Auch wäre es viel zu teuer, ein bestehendes PV-Kraftwerk an einen anderen Ort umziehen, um dort neue Kunden zu beliefern. Hinzu kommt, dass ein PV-Kraftwerk, das heute gebaut wird, mit PV-Kraftwerken späterer Baujahre konkurriert, die Solarstrom zur gleichen Zeit bei voraussichtlich weiter sinkenden Stromgestehungskosten liefern werden (Deflationseffekt für LCOE, sinkender Marktwertfaktor).

Innovative Technologien wie bspw. integrierte PV weisen im direkten Vergleich mit einfachen PV-Freiflächenanlagen etwas höhere Stromgestehungskosten auf, sie beanspruchen jedoch keine zusätzlichen Flächen. Um ihren Markteintritt zu beschleunigen und damit Nutzungskonflikte frühzeitig zu entschärfen, benötigen sie eine Anschubförderung.

21. Enthalten PV-Module giftige Substanzen?

Das hängt von Technologie und Materialwahl ab.

21.1 Waferbasierte Module

Module auf Basis von Siliciumwafern (über 90% Marktanteil) enthalten häufig noch Blei in der Zellmetallisierung (ca. 2 g Blei pro 60-Zellen-Modul) und in den eingesetzten Lo-

Fakten zur PV.docx 26.03.20 79 (99)

ten (ca. 10 g Blei). Blei, ein giftiges Schwermetall, ist in bestimmten, stark sauren oder basischen Umgebungen löslich, und die Lamination im Modul unterbindet Stofftransport nicht dauerhaft [IPV]. In waferbasierten Modulen lässt sich Blei durch unbedenkliche Materialien bei geringen Mehrkosten vollständig substituieren. Einige Modulhersteller setzen Rückseitenfolien ein, die Fluorpolymere enthalten, bspw. Polyvinylfluorid.

21.2 Dünnschicht-Module

Dünnschicht-Module auf CdTe-Basis (ca. 5% Marktanteil) enthalten Cadmium in Salzform, es lässt sich bei dieser Technologie nicht substituieren. Das metallische Cadmium sowie Cadmiumoxid werden als sehr giftig eingestuft, CdTe als gesundheitsschädlich. Es gibt alternative Dünnschicht-Technologien auf Basis von amorphem Silicium oder Kupfer-Indium-Selenid (CIS), die kein oder sehr wenig Cd enthalten.

CIS-Solarzellen enthalten Selen, welches v.a. als Oxid (z.B. nach Bränden) toxisch wirken kann, abhängig von der aufgenommenen Menge. Manche Hersteller erklären die Konformität ihrer CIS-Solarmodule mit der RoHS-Richtlinie (Restriction of certain Hazardous Substances) sowie der EU-Chemikalienverordnung REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals). Für eine differenzierte Bewertung wird auf unabhängige Untersuchungen des jeweiligen Modultyps verwiesen.

21.3 Solarglas

Alle gängigen Solarmodule benötigen ein Glas als Frontscheibe, das im relevanten Spektralbereich zwischen 380 – 1100 nm eine sehr geringe Absorption aufweist (Solarglasqualität). Manche Glashersteller erhöhen die Lichttransmission durch Beigabe von Antimon (Sb) zur Glasschmelze. Wenn dieses Glas auf Deponien entsorgt wird, kann Antimon ins Grundwasser gelangen. Studien deuten darauf hin, dass Antimonverbindungen ähnlich wirken wie entsprechende Arsenverbindungen.

21.4 Rücknahme und Recycling

PV-Produzenten haben im Juni 2010 ein herstellerübergreifendes Recyclingsystem in Betrieb genommen (PV Cycle), mit derzeit über 300 Mitgliedern. Die am 13. August 2012 in Kraft getretene Fassung der europäischen WEEE-Richtlinie (Waste Electrical and Electronic Equipment Directive) musste bis Ende Februar 2014 in allen EU-Staaten umgesetzt sein. Sie verpflichtet Produzenten, mindestens 85% der PV Module kostenlos zurückzunehmen und zu recyceln. Im Oktober 2015 trat in Deutschland das Elektro- und Elektronikgerätegesetz in Kraft. Es klassifiziert PV-Module als Haushaltsgerät und regelt Rücknahmepflichten sowie Finanzierung.

Im Recyclingprozess werden Aluminiumrahmen, Anschlussdose und Glas vom Laminat getrennt. Aluminium und Glass werden wiederverwertet. Verfahren zur Stofftrennung

Fakten zur PV.docx 26.03.20 80 (99)

für das verbleibende Laminat befinden sich in der Entwicklung, zu seinen wertvollen Bestandteilen zählen Silizium, Silber und das Kupfer der Zellverbinder.

22. Sind Rohstoffe zur PV-Produktion ausreichend verfügbar?

22.1 Waferbasierte Module

Waferbasierte Module benötigen keine Rohstoffe, für die eine Beschränkung absehbar wäre. Die aktive Zelle besteht i.W. aus Silicium, Aluminium und Silber. Silicium hat einen Masseanteil von 26% an der Erdhülle, ist also praktisch unbegrenzt verfügbar. Der Aluminium-Verbrauch fällt ebenfalls nicht ins Gewicht. Am kritischsten ist der Silberverbrauch zu sehen. Die PV-Industrie verbraucht weltweit ca. 1400 t Silber pro Jahr, das entspricht knapp 5% der Fördermenge in 2015. In Zukunft könnte Silber auf der Solarzelle weitestgehend durch Kupfer substituiert werden.

22.2 Dünnschicht-Module

Die Verfügbarkeit von Rohstoffen hängt von der Technologie ab.

Über die breite Verfügbarkeit von Tellur und Indium für CdTe- bzw. CIS-Module gibt es widersprüchliche Aussagen. Für Dünnschicht-Module auf Silicium-Basis sind keine Rohstoffengpässe absehbar.

23. Erhöhen PV-Anlagen das Brandrisiko?

23.1 Können defekte PV-Anlagen einen Brand auslösen?

Ja, wie alle elektrischen Anlagen.

Bestimmte Defekte in stromleitenden Komponenten einer PV-Anlage können zur Ausbildung von Lichtbögen führen. Befindet sich brennbares Material in unmittelbarer Nähe, beispielsweise Dachpappe oder Holz, kann es zu einem Brand kommen. Die Stromquellencharakteristik der Solarzellen kann einen Fehlerstrom im Vergleich zu Wechselstrom-Installationen sogar stabilisieren. Der Strom kann nur durch eine Unterbrechung des Stromkreises oder der Bestrahlung aller Module gestoppt werden. Deswegen müssen PV-Anlagen mit besonderer Sorgfalt errichtet werden.

In einigen Fällen – bei derzeit ca. 1,4 Mio. PV-Anlagen in Deutschland - hat das Zusammentreffen dieser Faktoren nachweislich zu einem Brand geführt. Ausgangspunkt der Brände waren meistens Fehler bei Verkabelung und Anschlüssen.

"Die Einhaltung der bestehenden Regeln durch qualifizierte Fachkräfte ist der beste Brandschutz. 0,006 Prozent der Photovoltaikanlagen verursachten bisher einen Brand mit größerem Schaden. In den letzten 20 Jahren gab es 350 Brände, an denen die So-

Fakten zur PV.docx 26.03.20 81 (99)

laranlage beteiligt war, bei 120 war sie Auslöser des Brandes. In 75 Fällen war der Schaden größer, in 10 dieser Fälle brannte ein Gebäude ab.

Die wichtigsten Besonderheiten von Photovoltaikanlagen: Sie arbeiten mit Gleichstrom und man kann sie nicht einfach abschalten, denn solange Licht auf die Module fällt, produzieren sie Strom. Wenn sich zum Beispiel eine minderwertige oder schlecht installierte Steckverbindung löst, dann unterbricht das den Stromfluss nicht immer. Es kann ein Lichtbogen entstehen, der im schlimmsten Fall direkt brandauslösend sein kann. Entsprechend wird untersucht, wie man die Entstehung von Lichtbögen vermeiden kann. Zusätzlich wird an Detektoren gearbeitet, die frühzeitig Alarm geben, wenn auch nur ein kleiner Lichtbogen entsteht.

Photovoltaikanlagen stellen im Vergleich mit anderen technischen Anlagen kein besonders erhöhtes Brandrisiko dar. Auch für die elektrische Sicherheit gibt es ausreichend vorhandene Regeln – wichtig ist, dass sie auch eingehalten werden. Brände entstanden oft dann, wenn unerfahrene Installationstrupps im Akkord Anlagen installieren. Werden die Solarstecker mit der Kombizange statt mit Spezialwerkzeug angebracht oder nicht kompatible Stecker verwendet, dann ist die Schwachstelle vorprogrammiert. Hier dürfen Anlagenbetreiber nicht an der falschen Stelle sparen.

Neben technischen Verbesserungen sind deshalb auch Vorschriften zur Kontrolle wichtig. So kann derzeit der Installateur einer Anlage sich selbst die ordnungsgemäße Ausführung bestätigen. Eine Empfehlung der Experten ist daher, die Abnahme durch einen unabhängigen Dritten vorzuschreiben. In der Diskussion ist auch, für private Photovoltaikanlagen eine wiederkehrende Sicherheitsprüfung vorzuschreiben, wie sie für gewerbliche Anlagen alle vier Jahre Pflicht ist." [ISE6]

23.2 Gefährden PV-Anlagen die Feuerwehrleute?

Ja, aber das trifft für viele spannungsführende Leitungen zu.

Bei Brandbekämpfung von außen schützt ein Mindestabstand von wenigen Metern die Feuerwehrleute vor Stromschlägen; dieser Sicherheitsabstand ist bei Dachanlagen i.A. gegeben. Das größte Risiko für Löschkräfte entsteht bei Brandbekämpfung von innen, wenn sie Räume betreten, wo spannungsführende, angeschmorte Kabel der PV-Anlage mit Wasser bzw. der Löschkraft selbst in Kontakt kommen. Um dieses Risiko zu reduzieren, arbeitet die Industrie an Notschaltern, die die Module noch in Dachnähe von der herabführenden DC-Leitung über Sicherheitsrelais trennen.

Bisher ist in Deutschland noch kein Feuerwehrmann bei der Brandbekämpfung durch PV-Strom verletzt worden. Ein Fallbericht, der durch die Presse ging, hatte Solarthermie-Kollektoren mit PV-Modulen verwechselt. Auf dem entsprechenden Haus war gar keine PV-Anlage installiert. "Durch flächendeckende Schulungsmaßnahmen bei den Feuerwehren konnten anfängliche Unsicherheiten behoben werden. Wie bei jeder Elektroinstallation kann man je nach Strahlart auch bei Photovoltaikanlagen mit Wasser aus ein bis fünf Meter Abstand sicher löschen. Alle Behauptungen, die Feuerwehr habe ein brennendes Wohnhaus wegen der Photovoltaik nicht gelöscht, stellten sich bei bisherigen Recherchen als falsch heraus." [ISE6]

Fakten zur PV.docx 26.03.20 82 (99)

23.3 Behindern PV-Module den direkten Löschangriff über das Dach?

Ja. Die durch die PV-Module hergestellte zweite "Dachhaut" behindert den Löscherfolg, weil das Wasser schlicht abläuft. Aus Feuerwehrsicht ist ein derartig durch Feuer beaufschlagtes Objekt jedoch meistens nicht mehr zu retten, d.h. der Schaden ist bereits weitgehend vorhanden und irreversibel, noch bevor die PV-Anlage die Löschtätigkeit behindert.

23.4 Entstehen beim Brand von PV-Modulen giftige Immissionen?

In Bezug auf CdTe-Module stellt eine Ausbreitungsberechnung des Bayerischen Landesamtes für Umwelt fest, dass bei einem Brand eine ernste Gefahr für die umliegende Nachbarschaft und Allgemeinheit sicher ausgeschlossen werden kann [LFU1]. Für CIS Module wird auf unabhängige Untersuchungen des jeweiligen Produkts verwiesen. Bei waferbasierten Modulen können die Rückseitenfolien Fluorpolymere enthalten, die selbst nicht giftig sind, sich jedoch im Brandfall bei hohen Temperaturen zersetzen können. Das Bayerische Landesamt für Umwelt kommt in einer Ausarbeitung zu dem Schluss, dass beim Abbrand fluorhaltiger Kunststoffe das Gefahrenpotenzial nicht maßgeblich von Fluorwasserstoff, sondern von den anderen Brandgasen bestimmt wird [LFU2].

24. Anhang: Fachbegriffe

24.1 EEG-Umlage

"Die EEG-Umlage ist der Teil des Strompreises, der vom Endverbraucher für die Förderung Erneuerbarer Energien zu entrichten ist. Sie resultiert aus dem so genannten Ausgleichsmechanismus, der durch das Gesetz für den Vorrang Erneuerbarer Energien (EEG) beschrieben wird. Das EEG dient der Förderung von Anlagen zur Erzeugung von Strom aus Erneuerbaren Energien, die auf Grund der Marktsituation ansonsten nicht in Betrieb genommen werden könnten. Gefördert werden Wasserkraft, Deponie-, Klär- und Grubengas, Biomasse, Geothermie, Windenergie und solare Strahlungsenergie.

Die Umlage der Förderungskosten von Strom aus Erneuerbaren Energien auf die Stromverbraucher vollzieht sich in mehreren Stufen. In der **ersten Stufe** wird den Besitzern von Anlagen zur Stromerzeugung aus Erneuerbaren Energien die vollständige Abnahme ihres Stromes zu einem festen Vergütungssatz zugesichert" [Bundestag]

Der Satz orientiert sich an den Stromgestehungskosten für die zu diesem Zeitpunkt installierte PV-Anlage und wird für 20 Jahre festgelegt.

"Die Betreiber der Stromnetze, die die Anlagen entsprechend an ihr Netz anzuschließen und die Einspeisung zu vergüten haben, leiten den Strom an ihre zuständigen Übertra-

Fakten zur PV.docx 26.03.20 83 (99)

ISE

gungsnetzbetreiber weiter und erhalten im Gegenzug von diesen die gezahlte Vergütung erstattet (**zweite Stufe**). Die Erneuerbare Energie wird zwischen den in Deutschland agierenden vier großen Übertragungsnetzbetreibern in der **dritten Stufe** anteilig ausgeglichen, so dass regionale Unterschiede in der Erzeugung von Erneuerbarer Energie kompensiert werden.

Durch die Ausgleichsmechanismusverordnung (AusglMechV) vom 17. Juli 2009 wurde die **vierte Stufe** der Vergütung bzw. Erstattung des Stroms aus Erneuerbaren Energien verändert. Bis dahin wurde der Strom aus Erneuerbaren Energien durch die Übertragungsnetzbetreiber schlicht an die Strom vertreibenden Energieversorgungsunternehmen zum Preis der jeweiligen Vergütung durchgeleitet. Nun sind die Übertragungsnetzbetreiber dazu angehalten, Strom aus Erneuerbarer Energie an der Strombörse (Spotmarkt) zu vermarkten. Dies führt dazu, dass die Energieversorgungsunternehmen, die den Strom letztendlich an die Kunden weitergeben, ihren Strom unabhängig von der anfallenden Erneuerbaren Energie mit größerer Planungssicherheit am Markt besorgen können. Dadurch können Einsparungen erzielt werden. Die Kosten der EEG-Förderung verbleiben somit zunächst bei den Übertragungsnetzbetreibern.

Diese Kosten berechnen sich durch die Differenz zwischen dem Ertrag, den der Strom aus Erneuerbaren Energien am Markt (Strombörse) einbringt, und den Vergütungssätzen, die anfänglich den Anlagenbetreibern gezahlt wurden. (...)" [Bundestag]

Die Differenz zwischen Vergütung und dem jeweiligen Preis an der Strombörse entspricht der EEG-Förderung. Die Förderung wird auf den gesamten Stromverbrauch umgelegt – die so genannte EEG-Umlage. Die Energieversorgungsunternehmen reichen die EEG-Umlage damit an die Stromverbraucher weiter. "Durch die Ausgleichsmechanismusverordnung (AusglMechV) sind die Übertragungsnetzbetreiber dazu verpflichtet, diese EEG-Umlage zum 15. Oktober für das jeweilige Folgejahr festzulegen. Die Berechnung unterliegt der Überwachung durch die Bundesnetzagentur. (…) Für energieintensive Unternehmen ist die EEG-Umlage auf 0,05 Ct/kWh begrenzt." [Bundestag].

Energieintensive Industriebetriebe mit einem hohen Stromkostenanteil sind damit weitgehend von der EEG-Umlage befreit.

24.2 Modulwirkungsgrad

Wenn nicht anders angegeben, bezeichnet der Modulwirkungsgrad einen Nennwirkungsgrad. Er wird unter genormten Bedingungen ("STC", standard test conditions) bestimmt als Verhältnis von abgegebener elektrischer Leistung zur eingestrahlten Leistung auf die Modulgesamtfläche. Die Normbedingungen sehen insbesondere eine Modultemperatur von 25° C, senkrechte Einstrahlung mit 1000 W/m² und ein bestimmtes Einstrahlungsspektrum vor. Im realen Betrieb weichen die Bedingungen davon meistens deutlich ab, so dass der Wirkungsgrad variiert.

Fakten zur PV.docx 26.03.20 84 (99)

24.3 Nennleistung eines PV-Kraftwerks

Die Nennleistung eines Kraftwerks ist die idealisierte DC-Leistung des Modulfeldes unter STC-Bedingungen, d.h. das Produkt aus Generatorfläche, Normeinstrahlung (1000 W/m²) und Nennwirkungsgrad der Module.

24.4 Spezifischer Ertrag

Der spezifische Ertrag [kWh/kWp] einer PV-Anlage bezeichnet das Verhältnis von Nutzertrag (Wechselstromertrag) über einen bestimmten Zeitraum, häufig ein Jahr, und installierter (STC) Modulleistung. Der Nutzertrag wird von realen Betriebsbedingungen beeinflusst, dazu zählen Modultemperatur, Bestrahlungsstärken, Lichteinfallswinkel, spektrale Abweichungen vom Normspektrum, Verschattung, Schneeauflage, Leitungsverluste, Wandlungsverluste im Wechselrichter und ggf. im Trafo, Betriebsausfälle.

Herstellerangaben zur STC-Modulleistung können vom tatsächlichen Wert abweichen, hier sind Angaben zu Toleranzen zu beachten.

Der spezifische Ertrag fällt an sonnigen Standorten gewöhnlich höher aus, er hängt aber nicht vom nominellen Modulwirkungsgrad ab.

24.5 Systemwirkungsgrad

Der Systemwirkungsgrad einer PV-Anlage ist das Verhältnis von Nutzertrag (Wechselstromertrag) und Einstrahlungssumme auf die Generatorfläche. Der nominelle Modulwirkungsgrad geht in den Systemwirkungsgrad ein.

24.6 Performance Ratio

Zum Effizienzvergleich netzgekoppelter PV-Anlagen an verschiedenen Standorten und mit verschiedenen Modultypen wird häufig der Performance Ratio verwendet.

Unter "Performance Ratio" versteht man das Verhältnis von Nutzertrag (Wechselstromertrag) und idealisiertem Ertrag (Produkt aus Einstrahlungssumme auf die Generatorfläche und nominellem Modulwirkungsgrad) einer Anlage.

Neue, sorgfältig geplante Anlagen erreichen PR-Jahreswerte zwischen 80 und 90%.

24.7 Grundlast, Mittellast, Spitzenlast, Netzlast und Residuallast

"Der Leistungsbedarf schwankt je nach Tageszeit. In der Regel treten Maxima am Tage auf und das Minimum nachts zwischen 0 und 6 Uhr. Der Verlauf des Leistungsbedarfes

Fakten zur PV.docx 26.03.20 85 (99)

wird als Lastkurve bzw. Lastverlauf beschrieben. In der klassischen Energietechnik wird die Lastkurve in drei Bereiche unterteilt:

- (i) die Grundlast
- (ii) die Mittellast
- (iii) die Spitzenlast

Die Grundlast beschreibt das Lastband, das über 24 Stunden nahezu konstant ist. Sie wird von sog. Grundlastkraftwerke wie Kernkraftwerke, Braunkohlekraftwerke und z.Zt. auch Laufwasserkraftwerke abgedeckt.

Die Mittellast beschreibt prognostizierbare, geschlossene Leistungsblöcke, die den größten Teil des zur Grundlast zusätzlichen Tagesbedarfs abdecken. Die Mittellast wird von sog. Mittellastkraftwerken wie Steinkohlekraftwerken und mit Methan betriebenen Gasund Dampf (GuD) Kraftwerken abgedeckt. Selten kommen auch Ölkraftwerke zum Einsatz. Die Spitzenlast deckt den verbleibenden Leistungsbedarf ab, wobei es sich in der Regel um die Tagesmaxima handelt. Die Spitzenlast wird von sog. Spitzenlastkraftwerken wie Gasturbinenkraftwerke und Pumpspeicherkraftwerke abgedeckt. Diese können innerhalb kürzester Zeit auf Nennleistung gefahren werden und so Lastschwankungen ausgleichen und Lastspitzen abdecken.

(...) Die Netzlast (ist) der Leistungswert des Strombedarfs, der aus dem Netz entnommen wird. Die residuale Last ergibt sich aus der Netzlast abzüglich der Einspeisung aus erneuerbaren Energien" [ISET1]

24.8 Stromerzeugung und -verbrauch

Abbildung 63 zeigt den Energiepfad vom Primärenergieträger, bspw. Solarstrahlung (Bestrahlungsstärke [W/m²]), Wind oder Erdgas (Energiedichte bei Verbrennung [J/kg]), bis zur Nutzenergie, auf die es dem Endanwender ankommt. Große Gasturbinen zeigen Wandlungsverluste von 60-65%. PV-Kraftwerke weisen Wandlungsverluste von 80-85% auf, bei praktisch kostenlos und unbegrenzt verfügbarer Primärenergie. Die Brutto-Stromerzeugung, bereinigt um den Importsaldo, entspricht dem Brutto-Stromverbrauch. Speicherverluste treten im Betrieb von Pumpspeicherkraftwerken oder Batterien auf. Verluste von Pumpspeicherkraftwerken betragen ca. 25% der eingespeicherten Strommenge, bei Li-lonen-Batterien sind es 5-10%, zuzüglich der Verluste im Batteriemanagementsystem. Wird Wasserstoff als Stromspeicher über stationäre Elektrolyseure und Brennstoffzellen eingesetzt, dann liegen die Verluste bei ca. 50%. Speicherverluste werden mit dem Ausbau der installierten PV-Leistung zunehmend auch für PV-Strom eine Rolle spielen.

Der Eigenverbrauch von fossilen und nuklearen Kraftwerken liegt bei ca. 7% ihrer Bruttoerzeugung, bei PV-Kraftwerken ist er marginal. Netzverluste, insbesondere Leitungsund Transformatorverluste, belaufen sich im deutschen Stromnetz auf knapp 6%. Der dezentrale Charakter der PV-Installationen reduziert die Netzverluste für PV-Strom.

Die Strommenge, die beim Endanwender abgenommen wird, ist der Nettoverbrauch (Endenergie). Die Effizienz seiner Geräte bestimmt die Wandlungsverluste bis zur finalen Nutzenergie, bspw. Kraft oder Licht.

Fakten zur PV.docx 26.03.20 86 (99)

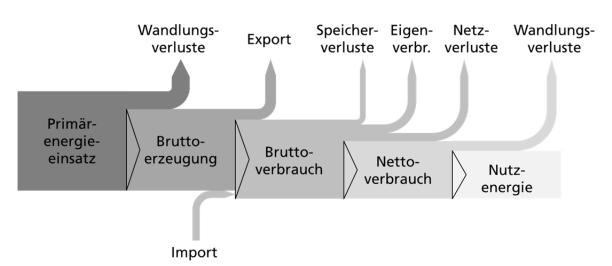


Abbildung 63: Begriffe der Stromerzeugung und des -verbrauchs

Fakten zur PV.docx 26.03.20 87 (99)

25. Anhang: Umrechnungstabellen [EEBW]

Vorsätze und Vorzeichen

k	Kilo	10 ³	Tausend
М	Mega	10 ⁶	Million (Mio.)
G	Giga	10 ⁹	Milliarde (Mrd.)
Т	Tera	10 ¹²	Billion (Bill.)
Р	Peta	10 ¹⁵	Billiarde (Brd.)

Umrechnungen

		PJ	GWh	Mio. t SKE	Mio. t RÖE
1 PJ	Petajoule	1	277,78	0,034	0,024
1 GWh	Gigawattstunde	0,0036	1	0,00012	0,000086
1 Mio. t SKE	Mio. Tonnen Steinkohleeinheit	29,31	8.141	1	0,70
1 Mio. t RÖE	Mio. Tonnen Rohöleinheit	41,87	11.630	1,43	1

Typische Eigenschaften von Kraftstoffen

	Dichte	Heizwert	Heizwert	Heizwert	Heizwert
	[kg/l]	[kWh/kg]	[kWh/l]	[MJ/kg]	[MJ/I]
Biodiesel	0,88	10,3	9,1	37,1	32,6
Bioethanol	0,79	7,4	5,9	26,7	21,1
Rapsöl	0,92	10,4	9,6	37,6	34,6
Diesel	0,84	12,0	10,0	43,1	35,9
Benzin	0,76	12,2	9,0	43,9	32,5

Typische Eigenschaften von festen und gasförmigen Energieträgern

	Dichte	Heizwert	Heizwert	Heizwert	Heizwert
	[kg/l] bzw. [kg/m ³]	[kWh/kg]	[kWh/l] bzw. [kWh/m ³]	[MJ/kg]	[MJ/I] bzw. [MJ/m ³]
Steinkohle	-	8,3 - 10,6	-	30,0 - 38,1	-
Braunkohle		2,6 - 6,2		9,2 - 22,2	
Erdgas H (in m ³)	0,76	11,6	8,8	41,7	31,7
Heizöl EL	0,86	11,9	10,2	42,8	36,8
Biogas (in m ³)	1,20	4,2 - 6,3	5,0 - 7,5	15,0 - 22, 5	18,0 - 27,0
Holzpellets	0,65	4,9 - 5,4	3,2 - 3,5	17,5 - 19,5	11,4 - 12,7

Fakten zur PV.docx 26.03.20 88 (99)

26. Anhang: Abkürzungen

BEV	Batterieelektrisches Fahrzeug (englisch Battery Electric Vehicle)
BHKW	Blockheizkraftwerk, Anlage zur Gewinnung elektrischer Energie und Wärme
	über Verbrennungsmotor oder Gasturbine
BMU	Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
BSW	Bundesverband Solarwirtschaft e.V.
EE	Erneuerbare Energien
EEG	Gesetz für den Vorrang Erneuerbarer Energien, (Erneuerbare-Energien-Gesetz -
	EEG)
EVU	Energieversorgungsunternehmen
GuD	Gas-und-Dampf-Kombikraftwerk
IEA	Internationale Energie Agentur
KWK	Kraft-Wärme-Kopplung, das Prinzip der simultanen Gewinnung von mechani-
	scher (schlussendlich elektrischer) Energie und nutzbarer Wärme
PHEV	Plug-in-Hybrid Elektrisches Fahrzeug
PV	Photovoltaik
THG	Treibhausgase, (englisch GHG, Green House Gases)
W_p	Watt "peak", Einheit für Nennleistung eines PV-Moduls, eines Modulfeldes
	oder eines Kraftwerkparks

Fakten zur PV.docx 26.03.20 89 (99)

27. Anhang: Quellen

ACA	Sektorkopplung – Optionen für die nächste Phase der Energiewende, Stellungnahme, acatech - Deutsche Akademie der Technikwissenschaften e. V. (Federführung), November 2017
AEE1	Metaanalyse: Digitalisierung der Energiewende, Agentur für Erneuerbare Energien, August 2018
AEE2	Bundesländer-Übersicht zu Erneuerbaren Energien, https://www.foederal- erneuerbar.de/uebersicht/bundeslaender, Agentur für Erneuerbare Energien, Oktober 2018
AEE3	https://www.unendlich-viel-energie.de/mediathek/grafiken/grafik-dossier- erneuerbare-energien-in-buergerhand, Agentur für Erneuerbare Energien, Dezember 2018
AEE4	https://www.unendlich-viel-energie.de/themen/akzeptanz- erneuerbarer/akzeptanz-umfrage/klares-bekenntnis-der-deutschen- bevoelkerung-zu-erneuerbaren-energien, Agentur für Erneuerbare Energien, Oktober 2018
AGEB1	Energieverbrauch in Deutschland - Daten für das 13. Quartal 2011, Arbeitsgemeinschaft Energiebilanzen e.V., November 2011
AGEB2	Energieflussbild 2017 für die Bundesrepublik Deutschland in Petajoule, AGEB, Mai 2019
AGEB6	Energieverbrauch in Deutschland im Jahr 2017, AGEB, Februar 2018
AGEE	Monatsbericht zur Entwicklung der erneuerbaren Stromerzeugung und Leistung in Deutschland, Arbeitsgruppe Erneuerbare Energien-Statistik (AGEEStat), Februar 2019
AGO- RA1	Stromnetze für 65 Prozent Erneuerbare bis 2030. Zwölf Maßnahmen für den synchronen Ausbau von Netzen und Erneuerbaren Energien, Agora Energiewende, Juli 2018
AGO- RA2	Klimabilanz von Elektroautos - Einflussfaktoren und Verbesserungspotenzial, Studie im Auftrag der Agora Verkehrswende, ifeu – Institut für Energie- und Umweltforschung, April 2019
AMP	Sektorenkopplung: Amprion und Open Grid Europe geben Power-to-Gas in Deutschland einen Schub, Pressemeldung, Amprion, Juni 2018
ATW1	Weis M, van Bevern K, Linnemann T, Forschungsförderung Kernenergie 1956 bis 2010: Anschubfinanzierung oder Subvention?, ATW 56. Jg. (2011) Heft 8/9
ATW2	Ludwig H, Salnikova T, Waas U, Lastwechselfähigkeiten deutscher KKW, ATW 55. Jg (2010), Heft 8/9
BAFA	Hintergrundinformationen zur Besonderen Ausgleichsregelung, Antragsverfahren 2013 auf Begrenzung der EEG-Umlage 2014, Hrsg.: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) und Bundesamt für

Fakten zur PV.docx 26.03.20 90 (99)

_	_
C	
•	_
_	_

,	Wirtschaft und Ausfuhrkontrolle (BAFA), 15. Oktober 2013			
	Klimapfade für Deutschland, Studie, The Boston Consulting Group (BCG) und Prognos, im Auftrag des Bundesverbandes der Deutschen Industrie (BDI), Ja-			
	nuar 2018			
	Durchschnittliche Ausnutzungsdauer der Kraftwerke im Jahr 2007 in Stun-			
	den, Stand September 2010			
	Foliensatz Erneuerbare Energien EEG_2017, BDEW Bundesverband der Energie und Wessenwijstaghaft a.V. Juli 2017			
	gie- und Wasserwirtschaft e.V., Juli 2017			
	Stromerzeugung und -verbrauch in Deutschland, Mitteilung des BDEW			
	(https://www.bdew.de/media/documents/20191212-			
	BRD_Stromerzeugung1991-2019.pdf), Dezember 2019			
	Redispatch in Deutschland - Auswertung der Transparenzdaten, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., 9. August 2016			
	BDEW-Pressegespräch 20.12.2017 https://www.bdew.de/media/documents/			
	20171220_PI_Anlage_Zahlen-Fakten.pdf			
	BDEW-Strompreisanalyse Januar 2019 - Haushalte und Industrie, BDEW, Ja-			
	nuar 2019			
	Beck M, Bopp G, Goetzberger A, Obergfell T, Reise C, Schindele S, Combin-			
	ing PV and Food Crops to Agrophotovoltaic – Optimization of Orientation			
	and Harvest, 27th European Photovoltaic Solar Energy Conference, Frankfurt,			
	Germany, 24-28 September 2012			
	BEE-Szenario 2030 - 65% Erneuerbare Energien bis 2030; Ein Szenario des			
	Bundesverbands Erneuerbare Energie e.V. (BEE), Mai 2019			
	Daten und Fakten, Land-, Forst- und Ernährungswirtschaft mit Fischerei und			
	Wein- und Gartenbau, Bundesministerium für Ernährung und Landwirtschaft			
	(BMEL), Dezember 2017			
	Räumlich differenzierte Flächenpotentiale für erneuerbare Energien in Deutschland. BMVI (Hrsg.), BMVI-Online-Publikation 08/2015.			
BMWi1	Gesamtausgabe der Energiedaten - Datensammlung des BMWi, letzte Aktua-			
	lisierung: 04.10.2017			
BMWi3	Forschungsförderung für die Energiewende, Bundesbericht Energieforschung			
	2016, Bundesministerium für Wirtschaft und Energie (BMWi)			
BMWi4	Energiegewinnung und Energieverbrauch, BMWi, Download am 28.8.2016			
,	von https://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-			
	analysen/Energiedaten/energiegewinnung-energieverbrauch.html			
	EEG in Zahlen: Vergütung, Differenzkosten und EEG-Umlage 2000 bis 2019,			
	Stand Oktober 2018			
BMWi6	Bundesbericht Energieforschung 2018, Bundesministerium für Wirtschaft und			
	Energie (BMWi), Juni 2018			
BNA	Monitoringbericht 2019, Bundesnetzagentur für Elektrizität, Gas, Telekom-			
	munikation, Post und Eisenbahnen, Stand November 2019			
BNA1	Bundesnetzagentur legt Eigenkapitalrenditen für Investitionen in die Strom-			
	und Gasnetze fest, Pressemeldung der Bundesnetzagentur vom 2. November			

Fakten zur PV.docx 26.03.20 91 (99)

I	S	E
-	_	_

	2011
BNE	Solarparks – Gewinne für die Biodiversität, Studie des Bundesverbands Neue
	Energiewirtschaft (bne) e.V., November 2019
BSW	50.000 neue Jobs durch Photovoltaik und Speicher, Pressemeldung des BSW-
	Solar, 5. Dezember 2019
BSW1	Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik), Bundes-
	verband Solarwirtschaft e.V. (BSW-Solar), März 2019
Bun-	EEG-Umlage 2010, Deutscher Bundestag, Wissenschaftliche Dienste, Nr.
destag	21/10, 25.03.2010
Carb	https://www.carbonbrief.org/profound-shifts-underway-in-energy-system-
	says-iea-world-energy-outlook, Carbon Brief, 2019
DEWI	Energiewirtschaftliche Planung für die Netzintegration von Windenergie in
	Deutschland an Land und Offshore bis zum Jahr 2020, Studie im Auftrag der
DLR2	Deutschen Energie-Agentur GmbH (dena), Februar 2005
DLNZ	O'Sullivan M, Lehr U, Edler D, Bruttobeschäftigung durch erneuerbare Energien in Deutschland und verringerte fossile Brennstoffimporte durch erneuer-
	bare Energien und Energieeffizienz, Zulieferung für den Monitoringbericht
	2015, Stand: September 2015
DOE	Electric Power Monthly, U.S. Department of Energy, October 2013
DVGW	Deutscher Verein des Gas- und Wasserfaches e. V., Pressemeldung vom 24.
	April 2019
DWD	Riecke W, Bereitstellung von historischen Globalstrahlungsdaten für die Pho-
	tovoltaik, 2. Fachtagung Energiemeteorologie, April 2011
ECOFY	Abschätzung der Kosten für die Integration großer Mengen an Photovoltaik
S	in die Niederspannungsnetze und Bewertung von Optimierungspotenzialen,
EED) A /	ECOFYS, März 2012
EEBW	Erneuerbare Energien in Baden-Württemberg 2011, Ministerium für Umwelt,
FFC	Klima und Energiewirtschaft Baden-Württemberg, November 2012
EEG	Gesetz zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des
	Rechts der erneuerbaren Energien (EEG 2017), Bundesrat Drucksache 355/16,
	08.07.16
EEX	Positionspapier der European Energy Exchange und EPEX SPOT, Februar 2014
EnAg	Klimabilanz Photovoltaik - Wie groß ist der CO ₂ -Fußabdruck von Solarstrom,
	EnergieAgentur.NRW, 2017
EnBW	EnBW verstärkt Engagement im Bereich Solarenergie, Pressemeldung, Energie
	Baden-Württemberg AG, Februar 2019
ENER	E-Mobility-Zukunft: ENERVIE an Meilenstein-Projekt beteiligt, Pressemeldung,
	Südwestfalen Energie und Wasser AG, Oktober 2018
ESYS	Ausfelder et al., Sektorkopplung – Untersuchungen und Überlegungen zur
	Entwicklung eines integrierten Energiesystems, Schriftenreihe Energiesysteme
	der Zukunft, November 2017
EPA	United States Environmental Protection Agency, heruntergeladen am

Fakten zur PV.docx 26.03.20 92 (99)

	9.7.2013 von
	http://www.epa.gov/climatechange/science/causes.html#GreenhouseRole
EuPD	ENERGIEWENDE im Kontext von Atom und Kohleausstieg, Perspektiven im
	Strommarkt bis 2040, Studie der EuPD Research Sustainable Management
	GmbH, November 2019
FAU	Deutschland ohne erneuerbare Energien?" – Ein Update für die Jahre 2014
	bis 2018, Diskussionspapier im Auftrag der EWS Elektrizitätswerke Schönau,
	Friedrich-Alexander Universität Erlangen-Nürnberg, Oktober 2019
FFF	Homepage der Forschungsgesellschaft für Energiewirtschaft mbH. Download

age der Forschungsgesellschaft für Energiewirtschaft https://www.ffegmbh.de/aktuelles/veroeffentlichungen-undfachvortraege/828-merit-order-der-konventionellen-kraftwerke-indeutschland-2018, Februar 2020 FNR Anbau und Verwendung nachwachsender Rohstoffe in Deutschland, Fachagentur Nachwachsende Rohstoffe e.V. (FNR), März 2019 FNR1 Biokraftstoffe im Vergleich, Pressegrafik, FNR, 2007 FNR2 https://biogas.fnr.de/daten-und-Faustzahlen Biogastechnologie, FNR, fakten/faustzahlen/, Download, März 2020 FÖS1 Externe Kosten der Atomenergie und Reformvorschläge zum Atomhaftungsrecht, Hintergrundpapier zur Dokumentation von Annahmen, Methoden und Ergebnissen, Forum Ökologisch-Soziale Marktwirtschaft e.V., September 2012 FÖS2 Was Strom wirklich kostet - Vergleich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten von konventionellen und erneuerbaren Energien, Studie im Auftrag von Greenpeace Energy eG und dem Bundesverband WindEnergie e.V. (BWE), Forum Ökologisch-Soziale Marktwirtschaft e.V. (FÖS), August 2012 Kurzanalyse zu den staatlichen Ausgaben für EURATOM, Studie im Auftrag FÖS3 von Greenpeace Energy eG, Forum Ökologisch-Soziale Marktwirtschaft e.V. (FÖS), Oktober 2019 FVEE1 Energiekonzept 2050 - Eine Vision für ein nachhaltiges Energiekonzept auf Basis von Energieeffizienz und 100% erneuerbaren Energien", Forschungsverbund Erneuerbare Energien (FVEE), Juni 2010, Grafik von B. Burger mit Update vom 28.11.2011 Reversible Brennstoffzelle bricht Wirkungsgrad-Rekord, Pressemeldung, For-FZJ schungszentrum Jülich, Dezember 2018 HTW Sinnvolle Dimensionierung von Photovoltaikanlagen für Prosumer, Kurzstudie, Hochschule für Technik und Wirtschaft (HTW) Berlin, März 2019 IFA1 Renewables 2018 -Market analysis and forecast from 2018 to 2023, International Energy Agency (IEA), Oktober 2018 IFA2 Redrawing the Energy-Climate Map, World Energy Outlook Special Report, International Energy Agency (IEA), Juni 2013 IEA3 Energiepolitik der IEA-Länder, Prüfung 2013, Deutschland, Zusammenfassung, International Energy Agency (IEA), April 2013

93 (99) Fakten zur PV.docx 26.03.20

_	_
C	
•	_
_	_

IEA4	World Energy Outlook 2013, IEA, November 2013
IEA5	World Energy Outlook, IEA, November 2019
IHA	Hydropower status report, International Hydropower Association, May 2019
IPCC	Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers, Intergovernmental Panel on Climate Change (IPCC), WGI AR5, Sept. 2013
IPV	Nover J, Schadstofffreisetzung aus Photovoltaik-Modulen, Abschlussbericht, Universität Stuttgart, Institut für Photovoltaik, 2018
IRENA	Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects, Studie der International Renewable Energy Agency (IRENA), Abu Dhabi, 2019
ISE1	Kost C, Schlegl T, Stromgestehungskosten Erneuerbare Energien; Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, Dezember 2010
ISE2	Kiefer K, Farnung B, Müller B, Degradation in PV Power Plants: Theory and Practice. 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, 2019.
ISE4	https://www.energy-charts.de, Verantwortlicher Redakteur: Prof. Dr. Bruno Burger, Fraunhofer-Institut für Solare Energiesysteme ISE
ISE5	Henning H-M, Palzer A, Was kostet die Energiewende? Wege zur Transformation des deutschen Energiesystems bis 2050; Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, November 2015
ISE6	Photovoltaik-Brandschutz – Fakten statt Phantome, Pressemeldung, Fraunhofer ISE, Februar 2013 (Näheres zum Brandschutz unter www.pvbrandsicherheit.de)
ISE7	Speicherstudie 2013 - Kurzgutachten zur Abschätzung und Einordnung energiewirtschaftlicher, ökonomischer und anderer Effekte bei Förderung von objektgebunden elektrochemischen Speichern, Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, Januar 2013
ISE9	Kurzstudie zur EEG-Umlage, Fraunhofer-Instituts für Solare Energiesysteme ISE, April 2015
ISE10	Photovoltaics Report, Fraunhofer-Instituts für Solare Energiesysteme ISE, PSE Conferences & Consulting GmbH, November 2019
ISE11	Meta Study on Future Crosssectoral Decarbonization Target Systems in Comparison to Current Status of Technologies, Discussion Paper, Fraunhofer ISE, März 2018
ISE12	Wege zu einem klimaneutralen Energiesystem - Die deutsche Energiewende im Kontext gesellschaftlicher Verhaltensweisen, Studie des Fraunhofer ISE. Februar 2020
ISET	Rolle der Solarstromerzeugung in zukünftigen Energieversorgungsstrukturen - Welche Wertigkeit hat Solarstrom?, Untersuchung im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Mai 2008
ISET1	Saint-Drenan Y-M et al. "Summenganglinien für Energie 2.0", Studie des Instituts für Solare Energieversorgungstechnik, ISET e.V., April 2009

Fakten zur PV.docx 26.03.20 94 (99)

_	_
C	
•	_
_	_

IVL	Lithium-Ion Vehicle Battery Production, Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling, Studie des Swedish Environmental Research Institute im Auftrag der Swedish Energy Agency, November 2019
IWES	Interaktion EE-Strom, Wärme und Verkehr, Studie im Auftrag des Bundesministerium für Wirtschaft und Energie, Projektleitung Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), September 2015
IWES1	Vorstudie zur Integration großer Anteile Photovoltaik in die elektrische Energieversorgung, Studie im Auftrag des BSW - Bundesverband Solarwirtschaft e.V., Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), November 2011
IWF	How Large Are Global Energy Subsidies? IMF Working Paper by David Coady, Ian Parry, Louis Sears and Baoping Shang, 2015
IZES	Kurzfristige Effekte der PV-Einspeisung auf den Großhandelsstrompreis, Institut für ZukunftsEnergieSysteme IZES, 31.01.2012
KBA	Zahlen im Überblick – Statistik, Kraftfahrt-Bundesamt, Juni 2018
LFU1	Berechnung von Immissionen beim Brand einer Photovoltaik-Anlage aus Cadmiumtellurid-Modulen, Bayerisches Landesamt für Umwelt, 11-2011
LFU2	Beurteilung von Kunststoffbränden, Az: 1/7-1515-21294, Bayerisches Landesamt für Umwelt, 1995
Licht	Analyse des Beitrags von Mini-BHKW zur Senkung von CO ₂ -Emissionen und zum Ausgleich von Windenergie, Gutachten zum geplanten »ZuhauseKraftwerk« im Auftrag der LichtBlick AG, LBD-Beratungsgesellschaft mbH, 2009
Licht2	Repräsentative Umfrage zu erneuerbaren Energien, Marktforschungsinstitut YouGov im Auftrag der LichtBlick SE, Februar 2020
MWV	Jahresbericht 2018, Mineralölwirtschaftsverband e.V., Juli 2018
NOW	IndWEDe - Industrialisierung der Wasserelektrolyse in Deutschland, Studie im Auftrag des Bundesministerium für Verkehr und digitale Infrastruktur (BMVI), 2018
ÖKO	EEG-Umlage und die Kosten der Stromversorgung für 2014 - Eine Analyse von Trends, Ursachen und Wechselwirkungen, Kurzstudie im Auftrag von Greenpeace, Juni 2013
ÖKO1	Beschäftigungsentwicklung in der Braunkohleindustrie: Status quo und Projektion, Öko-Institut Berlin, Juli 2018
ÖKO2	Aktueller Stand der KWK-Erzeugung (Dezember 2015), Studie des Ökoinstituts e.V. im Auftrag des Bundesministerium für Wirtschaft und Energie, Dezember 2015
ÖKO3	Eingesparte Kosten für Energieimporte im Jahr 2015 und die Innovationseffekte durch die Nutzung erneuerbarer Energien in Deutschland, Memo des Ökoinstituts e.V., Oktober 2016
Quasch	Quaschning V, Solare Unabhängigkeitserklärung, Photovoltaik, Oktober 2012
Raug	Raugei M et al., Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response,

Fakten zur PV.docx 26.03.20 95 (99)

ı	ς	F
	•	_

	Energy Policy, Volume 102, 2017, Pages 377-384
RWE	Die Energiewende, Daten und Fakten von RWE Deutschland, 6.10.2012
RWE1	RWE nimmt Batteriespeicher in Herdecke in Betrieb - Sechs Millionen Euro
	Investition, sieben MWh Kapazität, Pressemeldung, RWE, Februar 2018
Shell	Shell Scenarios Sky - Meeting the goals of the Paris agreement , Shell Interna-
	tional B.V., März 2018
Siem	Weit mehr als nur heiße Luft, Pressemeldung, Siemens AG, März 2017
SWM	M-Partnerkraft - Das virtuelle Kraftwerk der SWM, Flyer der Stadtwerke Mün-
	chen, Januar 2013
Test	"Immer sparsamer", test 1/2012, Stiftung Warentest
UBA	Energieziel 2050: 100% Strom aus erneuerbaren Quellen, Umweltbundes-
	amt, Juli 2010
UBA1	Netto-Bilanz der vermiedenen Treibhausgas-Emissionen durch die Nutzung
	erneuerbarer Energien, Umweltbundesamt, Download am 24.7.2019
UBA2	Artikel auf https://www.umweltbundesamt.de/daten/energie/kraft-waerme-
	kopplung-kwk#textpart-1, Oktober 2018
UBA3	Methodenkonvention 3.0 zur Ermittlung von Umweltkosten - Methodische
	Grundlagen, Umweltbundesamt, November 2018
UBA4	Daten und Fakten zu Braun- und Steinkohlen, Umweltbundesamt, Dezember
	2017
UBA5	Der Europäische Emissionshandel, https://www.umweltbundesamt.de/daten/
	klima/der-europaeische-emissionshandel#textpart-1, Download im Juni 2019
UBA6	Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 – 2018, Umweltbundesamt, April 2019
UBA7	Emissionsbilanz erneuerbarer Energieträger - Bestimmung der vermiedenen
027	Emissionen im Jahr 2017, Umweltbundesamt, Oktober 2018
UBA8	Wege in eine ressourcenschonende Treibhausgasneutralität – RESCUE
	Kurzfassung, Umweltbundesamt, November 2019
ÜNB	Mittelfristprognose zur deutschlandweiten Stromerzeugung aus EEG-
	geförderten Kraftwerken für die Kalenderjahre 2017 bis 2021, Leipziger Insti-
	tut für Energie GmbH, Oktober 2016
Vatt	CO2-freie Energie fürs Quartier: Sektorenkoppelnder Stahlspeicher bringt
	Energiewende auf Hochtemperatur, Pressemeldung, Vattenfall, Oktober 2018
VFL	Berechnung einer risikoadäquaten Versicherungsprämie zur Deckung der
	Haftpflichtrisiken, die aus dem Betrieb von Kernkraftwerken resultieren, Stu-
	die der Versicherungsforen Leipzig im Auftrag des Bundesverbands Erneuer-
	bare Energie e.V. (BEE), 1. April 2011
VGB	Kraftwerke 2020+, Stellungnahme des Wissenschaftlichen Beirats der VGB
	PowerTech e.V., 2010
VIK	VIK Strompreisindex Mittelspannung, Verband der Industriellen Energie- und
	Kraftwirtschaft e.V., September 2016
ZSW	Untersuchung zur Wirkung veränderter Flächenrestriktionen für PV-
	Freiflächenanlagen, Studie des ZSW im Auftrag der innogy SE, Januar 2019

Fakten zur PV.docx 26.03.20 96 (99)

28. Anhang: Abbildungen

Abbildung 1: Entwicklung des Anteils Erneuerbarer Energien am Brutto-Stromverbrauch in Deutschland, Daten aus [BMWi1], [BDEW3], [ISE4]
Abbildung 2: Durchschnittlicher Endkundenpreis (Systempreis, netto) für fertig
installierte Aufdachanlagen von 10-100 kW _p [ISE10]
Abbildung 3: Historische Entwicklung der Preise für PV-Module (PSE AG/Fraunhofer ISE,
Datenquelle: Strategies Unlimited/Navigant Consulting/EuPD). Die Gerade zeigt den
Trend der Preisentwicklung9
Abbildung 4: EEG-Vergütung für PV-Strom nach dem Datum der Inbetriebnahme des
Kraftwerks, mittlere Vergütung in den Ausschreibungen der Bundesnetzagentur,
Strompreise und durchschnittliche Vergütung für PV-Strom, Daten aus [BMWi1],
[BDEW6], [BMWi5]
Abbildung 5: Merit Order konventioneller Kraftwerke im Jahr 2018 bei einem mittleren
CO₂-Zertifikatspreis von 18 €/t [FFE]
Abbildung 6: Einfluss von EE auf die durchschnittlichen Spotpreise an der Strombörse
[BDEW2]
Abbildung 7: Entwicklung des für die Wertermittlung genutzten mittleren
Börsenstrompreises und der daraus resultierenden Differenzkosten [BDEW2] 13
Abbildung 8: PV-Ausbau und Vergütungssumme, Daten aus [BMWi1], [BMWi5] 14
Abbildung 9: Stromverbrauch der Industrie und EEG-Umlage 2019 [BDEW6]
Abbildung 10: Übersicht zu Einflussfaktoren und Berechnung der EEG-Umlage [ÖKO] 15
Abbildung 11: Entwicklung der EEG-Umlage und der EEG-Differenzkosten [ISE9] 16
Abbildung 12: Entwicklung der CO ₂ – Zertifikatspreise in Euro
(https://www.finanzen.net)
Abbildung 13: Zusammensetzung des durchschnittlichen Haushaltsstrompreises im Jahr
2019 (KWKG: Kraft-Wärme-Kopplungsgesetz; Strom-NEV: Entlastung stromintensiver
Industriebetriebe; Konzessionsabgabe: Entgelte für Nutzung öffentlicher Wege
[BDEW6])
Abbildung 14: Entwicklung von Brutto-Strompreisen für Haushalte, von Netto-
· · · · · · · · · · · · · · · · · · ·
Strompreisen für industrielle Großabnehmer und Entwicklung der EEG-Umlage,
Daten aus [BMWi1]
Abbildung 15: VIK Strompreisindex Mittelspannung [VIK]
Abbildung 16: Stromexport (als negative Werte) für Deutschland [ISE4]
Abbildung 17: Grobe Abschätzung der Stromgestehungskosten für PV-Anlagen unter
verschiedenen Einstrahlungsbedingungen
Abbildung 18: Anteile der Eigentümer an der Ende 2016 betriebenen PV-
Kraftwerksleistung [AEE3]
Abbildung 19: Konzept für ein virtuelles Kraftwerk der Stadtwerke München [SWM] 28
Abbildung 20: Ausgaben im Energieforschungsprogramm des Bundes nach Themen in
Mio. € [BMWi6]
Abbildung 21: Fördermittel für PV-Forschung nach Technologien [BMWi6]

Fakten zur PV.docx 26.03.20 97 (99)

Abbildung 22: Links: Einspeisung von PV-Strom [BSW], Rechts: Verteilung der installierten PV Leistung nach Anlagengröße [ISE10]
installierten PV-Leistung nach Anlagengröße [ISE10]
Abbildung 24: Stündliche tatsächliche und genlante Stremproduktion im Jahr 2014
Abbildung 24: Stündliche tatsächliche und geplante Stromproduktion im Jahr 2014
[ISE4]
Abbildung 25: Mittlere Leistung für die Einspeisung von Sonnen- und Windstrom im Jahr 2017, 15-Minuten-Werte [ISE4]
Abbildung 26: Stromproduktion PV + Wind in aufsteigend geordneten Stundenwerten
für das Jahr 2017
Abbildung 27: Monatliche PV- und Windstromproduktion der Jahre 2014-2017 [ISE4] 33
Abbildung 28: Beispiel für den Verlauf von Börsenstrompreisen, konventioneller und
regenerativer Stromerzeugung der 18. Kalenderwoche im Mai 2018 [ISE4] 35
Abbildung 29: System Average Interruption Duration Index (SAIDI) für verschiedene
Netzebenen in Minuten/Jahr [BNA]
Abbildung 30: Anwendungen für die Integration von Photovoltaik
Abbildung 31: Flächennutzung in Deutschland [FNR]
Abbildung 32: Umfrageergebnisse zum Neubau von Kraftwerken, Daten aus [Licht2]. 41
Abbildung 33: Umfrageergebnisse zur Akzeptanz verschiedener Kraftwerkstypen [AEE4]
41
Abbildung 34: Fahrzeugreichweite mit dem Jahresertrag aus 1 ha PV-Kraftwerk (1) und
von 1 ha Energiepflanzenanbau (2,3; Zahlen angepasst aus [FNR1])
Abbildung 35: Prognostizierte Vollbenutzungsstunden für ganzjährig betriebene
Anlagen, gemittelte Werte für die Jahre 2012 bis 2016, Daten aus [ÜNB]
Abbildung 36: Horizontale jährliche Globalstrahlungssumme in Deutschland, gemittelt
über den Zeitraum 1981-2010 [DWD]
Abbildung 37: Entwicklung der atmosphärischen CO ₂ -Konzentration und der mittleren
globalen Temperaturveränderung nach dem NASA Global Land-Ocean Temperature
Index [IEA2]
Abbildung 38: Schätzungen der atmosphärischen CO ₂ -Konzentration und der
Temperatur in der Antarktis auf Basis von Eisbohrkernen [EPA], dazugefügt zwei
neuere Messwerte des Mauna Loa Observatory
[https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html]
Abbildung 39: Durchschnittliche CO ₂ -Äquivalent Emissionen verschiedener
Stromerzeugungstechnologien [EnAg]
Abbildung 40: Spezifische und absolute CO ₂ -Emissionen der Stromerzeugung in
Deutschland [UBA6]50
Abbildung 41: Vermiedene Treibhausgasemissionen durch die Nutzung erneuerbarer
Energien im Jahr 2018 [UBA1]50
Abbildung 42: Entwicklung des jährlichen PV-Zubaus für Deutschland und die restliche
Welt, Zahlen von EPIA, IHS, Solar Power Europe, mit Prognose für 2020 51
Abbildung 43: Energieflussbild 2017 für Deutschland, Angaben in Petajoule [AGEB2]. 54
Abbildung 44: Importquoten für fossile und nukleare Primärenergieträger
(www.umwelthundesamt.de) 55

Fakten zur PV.docx 26.03.20 98 (99)

D - : : - - - - O / O FF
Deutschland [ÖKO3]
Abbildung 46: Struktur des Endenergieverbrauchs nach Anwendungsbereichen für
Deutschland im Jahr 2017, Zahlen aus [BMWi1]
Abbildung 47: Schematische Darstellung des Modells REMod (KW: Kraftwerk, KWK:
Kraft-Wärme-Kopplung, [ISE12])
Abbildung 48: Schematische Darstellung einer Residuallastkurve für Deutschland bei
Stromversorgung mit 100% EE, mit Erzeugern (+) und Lasten (-)
Abbildung 49: Entwicklung der globalen Stromerzeugung nach Technologien im Sky-
Szenario; der Durchmesser der Tortendiagramme entspricht dem globalen
Strombedarf [Shell]
Abbildung 50: IEA-Prognosen seit 2006 und tatsächliche Entwicklung des globalen
jährlichen PV-Zubaus [Carb]
Abbildung 51: Stromertragsprofile von PV-Anlagen in verschiedenen Montagevarianten,
berechnet mit der Software PVsol für einen überwiegend klaren Julitag am Standort
Freiburg
Abbildung 52: Rechenbeispiel für den spezifischen Monatsertrag einer PV-Anlage am
Standort Freiburg für südorientierte Module mit 30° Neigung (max. Jahresertrag) und
60° Neigung
Abbildung 53: Verfügbarkeit von Kraftwerken [VGB]
Abbildung 54: Treibhausgasemissionen von heutigen Fahrzeugen der Kompaktklasse in
Abhängigkeit von der Fahrleistung [AGORA2]66
Abbildung 55: Stromverbrauch eines durchschnittlichen Haushalts ohne
Warmwasseraufbereitung [RWE]68
Abbildung 56: Fiktive Jahresstromproduktion (8760 Stunden) für 200 GW _p PV und 200
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GWp Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GW _p Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017
GWp Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017

Fakten zur PV.docx 26.03.20 99 (99)